Quantum Theory I: Homework 24

Due: 9 May 2023

1 Angular position measurements

Consider a particle in a central potential and let $|l, m\rangle$ denote the conventional angular momentum states. An ensemble consists of particles, each prepared in the same state. The angular positions are measured by a device that can determine whether the particle is in any of the following regions

Region I:
$$0 \leqslant \theta \leqslant \pi/3$$
Region II: $\pi/3 \leqslant \theta \leqslant 2\pi/3$ Region III: $2\pi/3 \leqslant \theta \leqslant \pi$.

- a) Suppose that each particle is in the state $|1,1\rangle$. Determine the probability with which the measurement outcome yields each region.
- b) Suppose that each particle is in the state $|1,0\rangle$. Determine the probability with which the measurement outcome yields each region.
- c) Suppose that each particle is in the state $|1, -1\rangle$. Determine the probability with which the measurement outcome yields each region.
- d) For which state/s will position measurement outcomes be more likely to yield an outcome near the poles alongteh z axis?

2 Wavefunctions for angular momentum eigenstates

A particle in a central potential is in the state

$$|\psi\rangle = \frac{1}{\sqrt{2}} |1,1\rangle - \frac{1}{\sqrt{2}} |1,-1\rangle$$

where $|l,m\rangle$ is an angular momentum eigenstate. The wavefunction associated with this state is

$$\psi_{lm}(r,\theta,\phi) = R(r) Y_{lm}(\theta,\phi)$$

where R(r) depends on the precise nature of the potential and $Y_{lm}(\theta, \phi)$ is a spherical harmonic.

- a) Determine an expression for the wavefunction corresponding to $|\psi\rangle$. Simplify this as much as possible (noting that it will be necessary to retain the term R(r) in some form) and write this both in terms of spherical coordinates (r, θ, ϕ) and Cartesian coordinates (x, y, z).
- b) Determine \langle x \rangle , \langle z \rangle . (Hint: The results are very simple! You should be able to do this without evaluating any integrals explicitly. Set up the integrals and check symmetries of the integrands.)

3 Rotational Energy States of a Diatomic Molecule

In terms of rotational motion a diatomic molecule such as CO molecule can be regarded as a rigid rotator (i.e. two balls rigidly connected by a rod). Ignoring the center-of-mass and vibrational motions, the Hamiltonian for such a molecule is given by

$$\hat{H} = \frac{1}{2I} \hat{\mathbf{L}}^2$$

where I is the moment of inertia and $\mathbf{\hat{L}}^2$ represents the magnitude squared of the angular momentum.

- a) Determine an expression for the energy eigenvalues for the rigid rotator. List *all* the energy eigenstates for the two lowest energy eigenvalues.
- b) Now consider the same rigid rotator placed in a constant magnetic field $\mathbf{B} = B_0 \hat{z}$. The Hamiltonian is

$$\hat{H} = \frac{1}{2I}\hat{\mathbf{L}}^2 + \omega_0\hat{L}_z$$

where $\omega_0 > 0$ is a constant which depends on B_0 . Verify that the *eigenstates* are the same as those for the $\omega_0 = 0$ case and determine the *eigenvalues*. List the four lowest values assuming that $\omega_0 \hbar < 2\hbar^2/3I$.

c) Suppose that the emission spectrum of such a molecule were obtained. Assuming that transitions between all possible energy levels are possible, provide a list of the possible frequencies of the spectrum that arise from the four lowest energy states.