Quantum Theory I: Homework 21

Due: 28 April 2023

1 Spherical coordinate wavefunctions

Consider the following states with corresponding wavefunctions

$$
\begin{aligned}
& \left|\Psi_{1}\right\rangle \leftrightarrow \Psi_{1}(r, \theta, \phi)=A \frac{1}{\sqrt{4 \pi}} \frac{1}{r} e^{-r / \alpha} e^{i 2 \phi} \\
& \left|\Psi_{2}\right\rangle \leftrightarrow \Psi_{2}(r, \theta, \phi)=B \frac{1}{\sqrt{4 \pi}} e^{-r / \beta} e^{i \phi}
\end{aligned}
$$

where $\alpha, \beta>0$ are constants with units of distance.
a) Determine A and B.
b) Determine whether the states are orthogonal.
c) Suppose that a measuring device can only determine whether the particle will be found in the region where $y>0$ or else in the region where $y<0$. Determine whether this measuring device will yield statistically distinct outcomes for the two states. Hint: first convert information about this region into spherical coordinates.
d) Consider any position measuring device that gives outcomes that only refer to the direction in which a particle may be located, rather than how far it is located from the origin. Could any such measuring device yield statistically distinct outcomes for the two states?

2 Orbital angular momentum operator algebra

The orbital angular momentum operators are defined as:

$$
\begin{aligned}
& \hat{L}_{x}:=\hat{y} \hat{p}_{z}-\hat{z} \hat{p}_{y} \\
& \hat{L}_{y}:=\hat{z} \hat{p}_{x}-\hat{x} \hat{p}_{z} \\
& \hat{L}_{z}:=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x} .
\end{aligned}
$$

a) Show that

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}
$$

Similarly one can show that (do not do these for this problem)

$$
\begin{aligned}
& {\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar \hat{L}_{x}} \\
& {\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar \hat{L}_{y}}
\end{aligned}
$$

Hint: Note that $[\hat{A}+\hat{B}, \hat{C}+\hat{D}]=[\hat{A}, \hat{C}]+[\hat{A}, \hat{D}]+[\hat{B}, \hat{C}]+[\hat{B}, \hat{D}]$.
b) Using $\hat{\boldsymbol{L}}^{2}:=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}$ show that

$$
\left[\hat{\boldsymbol{L}}^{2}, \hat{L}_{x}\right]=0
$$

Similarly one can show that (do not do these for this problem)

$$
\left[\hat{\boldsymbol{L}}^{2}, \hat{L}_{j}\right]=0
$$

for any $j=x, y, z$.
c) Show that

$$
\left[\hat{L}_{x}, \hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}\right]=0
$$

Similarly it can be shown that (do not do these for this problem)

$$
\left[\hat{L}_{j}, \hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}\right]=0
$$

for $j=y, z$ and that

$$
\left[\hat{L}_{j}, \hat{p}_{x}^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}\right]=0
$$

for any $j=x, y, z$.
d) The Hamiltonian for the isotropic three dimensional oscillator is

$$
\hat{H}=\frac{1}{2 m}\left(\hat{p}_{x}^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}\right)+\frac{1}{2} m \omega^{2}\left(\hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}\right) .
$$

Show that for the isotropic harmonic oscillator

$$
\left[\hat{H}, \hat{L}_{j}\right]=0
$$

for any $j=x, y, z$ and that

$$
\left[\hat{H}, \hat{\boldsymbol{L}}^{2}\right]=0
$$

What does this imply regarding the angular momentum of the isotropic harmonic oscillator?

3 Angular momentum measurements and wavefunctions

Consider a particle of mass m which is subject to measurements of its components of angular momentum. In (spherical) position space, the angular momentum operators are:

$$
\begin{aligned}
& \hat{L}_{x} \leftrightarrow i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\frac{\cos \theta \cos \phi}{\sin \theta} \frac{\partial}{\partial \phi}\right) \\
& \hat{L}_{y} \leftrightarrow i \hbar\left(-\cos \phi \frac{\partial}{\partial \theta}+\frac{\cos \theta \sin \phi}{\sin \theta} \frac{\partial}{\partial \phi}\right) \\
& \hat{L}_{z} \leftrightarrow-i \hbar \frac{\partial}{\partial \phi}
\end{aligned}
$$

In the following we will assume that a particle is in a state which is described by a (spherical) position space wavefunction with the form

$$
\Psi(r, \theta, \phi)=R(r) Y(\theta, \phi)
$$

where the radial component is normalized

$$
\int_{0}^{\infty}|R(r)|^{2} r^{2} \mathrm{~d} r=1 .
$$

Suppose that the particle is in a state for which the (spherical) position space wavefunction is

$$
Y(\theta, \phi)=\sqrt{\frac{3}{8 \pi}} e^{i \phi} \sin \theta
$$

a) Show that

$$
\hat{L}_{z} Y(\theta, \phi)=\hbar Y(\theta, \phi)
$$

and determine an expression for $\hat{L}_{x} Y(\theta, \phi)$.
b) Show that

$$
\hat{L}_{z}^{2} Y(\theta, \phi)=\hbar^{2} Y(\theta, \phi)
$$

and determine an expression for $\hat{L}_{x}^{2} Y(\theta, \phi)$.
c) Show that

$$
\begin{aligned}
\left\langle L_{x}\right\rangle & =0 \\
\left\langle L_{z}\right\rangle & =\hbar
\end{aligned}
$$

Note that it can also be shown that $\left\langle L_{y}\right\rangle=0$.
d) Show that

$$
\begin{aligned}
\Delta L_{x} & =\frac{\hbar}{\sqrt{2}} \\
\Delta L_{z} & =0
\end{aligned}
$$

Note that it can be shown that $\Delta L_{y}=\hbar / \sqrt{2}$.
e) Consider describing this state in terms of the outcome of angular momentum measurements. Is there any component of angular momentum, for which measurements yield only outcome with 100% certainty? If so what is it and what is the measurement outcome?

