Quantum Theory I: Homework 13

Due: 17 March 2023

1 States of general systems

The energy eigenstates of a generic quantum system are $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle, \ldots$ and the associated energies are $E_{1}, E_{2}, E_{3}, \ldots$ Consider the special states:

$$
\begin{aligned}
& |\Psi\rangle:=A\left[2 i\left|\phi_{1}\right\rangle-\left|\phi_{2}\right\rangle+5\left|\phi_{3}\right\rangle\right] \\
& |\Phi\rangle:=B\left[2\left|\phi_{2}\right\rangle-5 i\left|\phi_{3}\right\rangle+\left|\phi_{4}\right\rangle\right]
\end{aligned}
$$

a) Determine the normalization constants A and B.
b) Determine $\langle\Phi \mid \Psi\rangle$.
c) Suppose that the energy of the system is measured for each state. List the outcomes and the probabilities with which they occur.

2 Generic measurement states

The energy eigenstates of a generic quantum system are $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle, \ldots$. Consider the special states:

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & :=\frac{1}{\sqrt{2}}\left[\left|\phi_{1}\right\rangle+\left|\phi_{2}\right\rangle\right] \\
\left|\psi_{2}\right\rangle & :=\frac{1}{2}\left[-\left|\phi_{1}\right\rangle+\left|\phi_{2}\right\rangle+\sqrt{2}\left|\phi_{3}\right\rangle\right] \\
\left|\psi_{3}\right\rangle & :=\frac{1}{2}\left[\left|\phi_{1}\right\rangle-\left|\phi_{2}\right\rangle+\sqrt{2}\left|\phi_{3}\right\rangle\right]
\end{aligned}
$$

Do these states correspond to distinct outcomes of a single measurement? Explain your answer.

3 Coherent light states

A state of light has the form

$$
|\Psi\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle .
$$

where α is a constant and $|n\rangle$ represents a state with exactly n photons.
a) Suppose that the photon number is measured. List the outcomes and their probabilities.
b) Determine an expression for the expectation value of the number of photons.
c) Suppose $\alpha=2$ that the photon number is measured. Determine an expression for the probabilities for $n=0,1, \ldots, 10$. Plot the probabilities versus n. How does the most likely value of n (that which gives the largest probability) compare to $\langle n\rangle$?

4 Particle states and measurements

For a particle of mass m in an infinite well of width L the energy eigenvalues are

$$
E_{n}=\frac{\pi^{2} \hbar^{2} n^{2}}{2 m L^{2}}
$$

where $n=1,2,3, \ldots$. Denote the associated state by $\left|\phi_{n}\right\rangle$. Suppose that a particle is in the following superposition of energy eigenstates at $t=0$:

$$
|\Psi(0)\rangle=A \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left|\phi_{n}\right\rangle
$$

where A is a real constant.
a) Apply the normalization condition to determine A.
b) Determine an expression for the expectation value of energy at time $t=0$.
c) Determine an expression for the state at a later time t and use this to determine an expression for the expectation value of energy at time t. Verify that this does not depend on t.

Hint: the following will be essential:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \\
& \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
\end{aligned}
$$

