Quantum Theory I: Homework 8

Due: 21 February 2023

1 Expectation values of spin measurements

Consider an ensemble of particles, each of which is in the state

$$\ket{+\hat{n}} = \cos\left(rac{ heta}{2}
ight) \ket{+\hat{z}} + e^{i\phi} \sin\left(rac{ heta}{2}
ight) \ket{-\hat{z}}.$$

Situations of this type arise in nuclear magnetic resonance (NMR) spectroscopy on spin-1/2 nuclei such as the hydrogen nucleus. NMR spectrometers are well equipped to measure ensemble averages of the components of spin; for large ensemble sizes these will approximate the expectation values $\langle S_x \rangle$, $\langle S_y \rangle$ and $\langle S_z \rangle$. It is useful to gather these into a magnetization vector

$$\mathbf{M} := \frac{ge}{2m_p} \Big(\langle S_x \rangle \, \hat{\mathbf{x}} + \langle S_y \rangle \, \hat{\mathbf{y}} + \langle S_z \rangle \, \hat{\mathbf{z}} \Big)$$

where e is the charge of a proton, m_p its mass and g a g-factor.

a) Consider particles described by the state $|+\hat{n}\rangle$. Determine expressions for $\langle S_x \rangle$, $\langle S_y \rangle$ and $\langle S_z \rangle$. Substitute these into the magnetization vector defined above. Show that the magnetization is

$$\mathbf{M}_{\text{state } |+\hat{\boldsymbol{n}}\rangle} := \alpha \left(\sin \theta \cos \phi \hat{\mathbf{x}} + \sin \theta \sin \phi \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}} \right)$$

where α is a constant independent of θ and ϕ . Find an expression for α .

b) Determine the direction, $\hat{\mathbf{n}}$, in which an SG apparatus must be oriented so that any single particle in this state $|+\hat{\mathbf{n}}\rangle$ will give a measurement outcome $S_n = +\hbar/2$ with 100% certainty and express $\hat{\mathbf{n}}$ in terms of $\hat{\mathbf{x}}, \hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$. Find a simple relationship between $\hat{\mathbf{n}}$ and \mathbf{M} .

Actually, in most NMR situations, the spin-1/2 nuclei are not all in the same state. In effect, some are in the state $|+\hat{n}\rangle$ and the rest are in the state $|-\hat{n}\rangle$. Suppose that the fraction of particles in the state $|+\hat{n}\rangle$ is $(1+\varepsilon)/2$ and that of particles in the state $|-\hat{n}\rangle$ is $(1-\varepsilon)/2$ where $0 < \varepsilon < 1$ is a constant that depends on the particular NMR situation. The spectrometer still measures the ensemble averages of the components of spin; for large ensemble sizes these will approximate *suitably weighted* expectation values. For example,

$$\langle S_x \rangle_{\text{entire ensemble}} = \frac{1+\varepsilon}{2} \langle S_x \rangle_{\text{state } |+\hat{\boldsymbol{n}}\rangle} + \frac{1-\varepsilon}{2} \langle S_x \rangle_{\text{state } |-\hat{\boldsymbol{n}}\rangle}$$

where $\langle S_x \rangle_{\text{state } |+ \hat{n} \rangle}$ is the expectation value of measurements of S_x for an ensemble of particles each in state $|+ \hat{n} \rangle$, etc, It follows that the magnetization for the ensemble is

$$\mathbf{M} = \frac{1+\varepsilon}{2} \, \mathbf{M}_{\text{state } |+\hat{\boldsymbol{n}}\rangle} + \frac{1-\varepsilon}{2} \, \mathbf{M}_{\text{state } |-\hat{\boldsymbol{n}}\rangle}$$

where $\mathbf{M}_{\text{state } |+\hat{n}\rangle}$ and $\mathbf{M}_{\text{state } |-\hat{n}\rangle}$ are the magnizations for particles in the states $|+\hat{n}\rangle$ and $|-\hat{n}\rangle$ respectively.

c) Show that, for particles described by the state $\left|-\hat{n}\right\rangle$,

$$\mathbf{M}_{\text{state } |-\hat{\boldsymbol{n}}\rangle} := -\alpha \left(\sin\theta \cos\phi \hat{\mathbf{x}} + \sin\theta \sin\phi \hat{\mathbf{y}} + \cos\theta \hat{\mathbf{z}} \right)$$

where α is the same as in part (a).

d) Most NMR spectrometers are configured so that the signal strength that they obtain is proportional to the magnitude of the transverse magnetization, i.e. $\sqrt{M_x^2 + M_y^2}$. Determine an expression for the signal strength. Note that typically $\varepsilon \approx 10^{-4}$.

2 Eigenvalues and eigenvectors of a spin observable

Consider the spin observable

$$\hat{S} = \frac{\hbar}{2\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

as represented in the $\{ |+\hat{z}\rangle, |-\hat{z}\rangle \}$ basis. Determine the eigenvalues and eigenvectors of \hat{S} .

3 Spin-1/2 Observable

A physicist working with spin-1/2 particles claims that a measuring device that he is using corresponds to the observable

$$\hat{A} = \frac{\hbar}{2\sqrt{2}} \begin{pmatrix} 0 & 1-i \\ 1+i & 0 \end{pmatrix}$$

where this representation is in terms of the $\{ |+\hat{z}\rangle, |-\hat{z}\rangle \}$ basis.

- a) Verify that \hat{A} satisfies the requirements for an observable.
- b) Determine the eigenvalues of \hat{A} .
- c) Suppose the physicist subjects a spin-1/2 particle to this measuring device. What are the possible outcomes of the measurement?
- d) Determine the states associated with each of the two measurement outcomes (i.e. the states such that each gives an outcome with certainty).
- e) Determine the direction $\hat{\mathbf{n}}$ associated with the measurement.

4 Observable actions

Consider the observable

$$\hat{B} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

where this representation is in terms of the $\{|+\hat{z}\rangle, |-\hat{z}\rangle\}$ basis. The states $|+\hat{y}\rangle$ and $|-\hat{y}\rangle$ are eigenstates of \hat{B} .

- a) Describe whether $\hat{B} |+ \hat{y} \rangle$ is exactly the outcome of a measurement on a particle in the state $|+ \hat{y} \rangle$. Explain your answer. Identify how this is might be associated with a measurement *outcome*.
- b) Describe whether $\hat{B}(|+\hat{y}\rangle + |-\hat{y}\rangle)/\sqrt{2}$ is exactly the outcome of a measurement on a particle in the state $(|+\hat{y}\rangle + |-\hat{y}\rangle)/\sqrt{2}$. Explain your answer. Identify how this is might be associated with a measurement *outcome*.
- c) In general does operating with an observable on a state produce a measurement outcome?