Quantum Theory I: Homework 7

Due: 17 February 2023

1 Measurement operators

Consider a spin-1/2 particle subjected to an SG \hat{y} measurement. The measurement operators associated with the measurement outcomes are

$$S_{y} = +\frac{\hbar}{2} \leftrightarrow |+\hat{\boldsymbol{y}}\rangle \langle +\hat{\boldsymbol{y}}| = \hat{P}_{+y}$$
$$S_{y} = -\frac{\hbar}{2} \leftrightarrow |-\hat{\boldsymbol{y}}\rangle \langle -\hat{\boldsymbol{y}}| = \hat{P}_{-y}$$

- a) Determine the matrix representation of $|+\hat{y}\rangle \langle +\hat{y}|$ in the $\{|+\hat{z}\rangle, |-\hat{z}\rangle\}$ basis.
- b) Determine the matrix representation of $|-\hat{y}\rangle \langle -\hat{y}|$ in the $\{|+\hat{z}\rangle, |-\hat{z}\rangle\}$ basis.
- c) Suppose that the spin-1/2 particle is initially in the state $|+\hat{x}\rangle$. Using row and column vector representations of bra and ket vectors and the measurement operators above, determine $\Pr(S_y = \pm \hbar/2)$.
- d) Determine the matrix representation of \hat{S}_y in the $\{|+\hat{z}\rangle, |-\hat{z}\rangle\}$ basis and use this to determine the expectation value $\langle S_y \rangle$ for an ensemble of particles in the state $|+\hat{x}\rangle$.

2 Matrix multiplication and the adjoint operation

Consider the matrices

$$A = \begin{pmatrix} 1 & -3i \\ i & 2 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}.$$

- a) Determine the matrix products AB and BA. Are these equal?
- b) Determine A^{\dagger} and B^{\dagger} . Determine whether each matrix is Hermitian.
- c) Verify, by explicitly evaluating either side that

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}.$$

3 Observables for spin-1/2

Consider the observable corresponding to the x component of spin

$$\hat{S}_x := rac{\hbar}{2} \Big(\ket{+\hat{x}} ig< +\hat{x} \ket{-} \ket{-\hat{x}} ig< -\hat{x} \ket{}.$$

- a) Find the matrix representation of \hat{S}_x in the $\{|+\hat{z}\rangle, |-\hat{z}\rangle\}$ basis.
- b) Verify that \hat{S}_x is Hermitian.

The observable corresponding to the component of spin along the direction $\hat{\mathbf{n}}$ is

$$\hat{S}_n := rac{\hbar}{2} \Big(\ket{+ \hat{n}} ig\langle + \hat{n}
vert - \ket{- \hat{n}} ig\langle - \hat{n} ert \Big).$$

c) Using the standard representations

$$|+\hat{n}
angle = \cos\left(rac{ heta}{2}
ight)|+\hat{z}
angle + e^{i\phi}\,\sin\left(rac{ heta}{2}
ight)|-\hat{z}
angle$$

 $|-\hat{n}
angle = \sin\left(rac{ heta}{2}
ight)|+\hat{z}
angle - e^{i\phi}\,\cos\left(rac{ heta}{2}
ight)|-\hat{z}
angle$

find the matrix representation of \hat{S}_n in the $\{\ket{+\hat{z}}, \ket{-\hat{z}}\}$ basis.

d) Verify that

$$\hat{S}_n = \cos\phi\sin\theta\,\hat{S}_x + \sin\phi\sin\theta\,\hat{S}_y + \cos\theta\,\hat{S}_z.$$

This is reminiscent of $\hat{\mathbf{n}} = \cos \phi \sin \theta \hat{\mathbf{x}} + \sin \phi \cos \theta \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}}$. In this sense one can regard the spin as a vector quantity.