Quantum Theory I: Homework 7

Due: 17 February 2023

1 Measurement operators

Consider a spin- $1 / 2$ particle subjected to an $\operatorname{SG} \hat{\boldsymbol{y}}$ measurement. The measurement operators associated with the measurement outcomes are

$$
\begin{aligned}
& S_{y}=+\frac{\hbar}{2} \leftrightarrow|+\hat{\boldsymbol{y}}\rangle\langle+\hat{\boldsymbol{y}}|=\hat{P}_{+y} \\
& S_{y}=-\frac{\hbar}{2} \leftrightarrow|-\hat{\boldsymbol{y}}\rangle\langle-\hat{\boldsymbol{y}}|=\hat{P}_{-y}
\end{aligned}
$$

a) Determine the matrix representation of $|+\hat{\boldsymbol{y}}\rangle\langle+\hat{\boldsymbol{y}}|$ in the $\{|+\hat{\boldsymbol{z}}\rangle,|-\hat{\boldsymbol{z}}\rangle\}$ basis.
b) Determine the matrix representation of $|-\hat{\boldsymbol{y}}\rangle\langle-\hat{\boldsymbol{y}}|$ in the $\{|+\hat{\boldsymbol{z}}\rangle,|-\hat{\boldsymbol{z}}\rangle\}$ basis.
c) Suppose that the spin- $1 / 2$ particle is initially in the state $|+\hat{\boldsymbol{x}}\rangle$. Using row and column vector representations of bra and ket vectors and the measurement operators above, determine $\operatorname{Pr}\left(S_{y}= \pm \hbar / 2\right)$.
d) Determine the matrix representation of \hat{S}_{y} in the $\{|+\hat{\boldsymbol{z}}\rangle,|-\hat{\boldsymbol{z}}\rangle\}$ basis and use this to determine the expectation value $\left\langle S_{y}\right\rangle$ for an ensemble of particles in the state $|+\hat{\boldsymbol{x}}\rangle$.

2 Matrix multiplication and the adjoint operation

Consider the matrices

$$
A=\left(\begin{array}{cc}
1 & -3 i \\
i & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right) .
$$

a) Determine the matrix products $A B$ and $B A$. Are these equal?
b) Determine A^{\dagger} and B^{\dagger}. Determine whether each matrix is Hermitian.
c) Verify, by explicitly evaluating either side that

$$
(A B)^{\dagger}=B^{\dagger} A^{\dagger}
$$

3 Observables for spin-1/2

Consider the observable corresponding to the x component of spin

$$
\hat{S}_{x}:=\frac{\hbar}{2}(|+\hat{\boldsymbol{x}}\rangle\langle+\hat{\boldsymbol{x}}|-|-\hat{\boldsymbol{x}}\rangle\langle-\hat{\boldsymbol{x}}|) .
$$

a) Find the matrix representation of \hat{S}_{x} in the $\{|+\hat{\boldsymbol{z}}\rangle,|-\hat{\boldsymbol{z}}\rangle\}$ basis.
b) Verify that \hat{S}_{x} is Hermitian.

The observable corresponding to the component of spin along the direction $\hat{\mathbf{n}}$ is

$$
\hat{S}_{n}:=\frac{\hbar}{2}(|+\hat{\boldsymbol{n}}\rangle\langle+\hat{\boldsymbol{n}}|-|-\hat{\boldsymbol{n}}\rangle\langle-\hat{\boldsymbol{n}}|) .
$$

c) Using the standard representations

$$
\begin{aligned}
|+\hat{\boldsymbol{n}}\rangle & =\cos \left(\frac{\theta}{2}\right)|+\hat{\boldsymbol{z}}\rangle+e^{i \phi} \sin \left(\frac{\theta}{2}\right)|-\hat{\boldsymbol{z}}\rangle \\
|-\hat{\boldsymbol{n}}\rangle & =\sin \left(\frac{\theta}{2}\right)|+\hat{\boldsymbol{z}}\rangle-e^{i \phi} \cos \left(\frac{\theta}{2}\right)|-\hat{\boldsymbol{z}}\rangle
\end{aligned}
$$

find the matrix representation of \hat{S}_{n} in the $\{|+\hat{\boldsymbol{z}}\rangle,|-\hat{\boldsymbol{z}}\rangle\}$ basis.
d) Verify that

$$
\hat{S}_{n}=\cos \phi \sin \theta \hat{S}_{x}+\sin \phi \sin \theta \hat{S}_{y}+\cos \theta \hat{S}_{z} .
$$

This is reminiscent of $\hat{\mathbf{n}}=\cos \phi \sin \theta \hat{\mathbf{x}}+\sin \phi \cos \theta \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}$. In this sense one can regard the spin as a vector quantity.

