# Quantum Theory I: Homework 5 

Due: 10 February 2023

## 1 Photons

Light is incident on a polarizing filter whose transmission axis is oriented at angle $\theta$ from the vertical. The light that passes through this polarizing filter is incident on a second polarizing filter whose transmission axis is oriented at angle $\phi>\theta$ from the vertical. Let $N_{1}$ be the number of photons that pass through the first filter and $N_{2}$ the number that pass through the second filter.
a) Let $\left|\psi_{1}\right\rangle$ represent that state of a photon that passes though the first filter. Express this in the form

$$
\left|\psi_{1}\right\rangle=c_{1}|\mathcal{\downarrow}\rangle+c_{2}|\leftrightarrow\rangle
$$

giving $c_{1}$ and $c_{2}$ in terms of the relevant angles.
b) Use the ket/state formalism for calculating probabilities to show that the probability with which a photon that is incident on the second filter is subsequently transmitted by the second filter is $[\cos (\phi-\theta)]^{2}$.
c) What would Malus' law predict for the fraction of photons, originally incident on the second filter that are transmitted by the second filter i.e. $N_{2} / N_{1}$ ? How does this compare to the result determined from the ket formalism?

## 2 Bra vectors and inner products

Consider the kets

$$
\begin{aligned}
\left|\phi_{1}\right\rangle & =\frac{5}{13}|+\hat{\boldsymbol{z}}\rangle-\frac{12}{13}|-\hat{\boldsymbol{z}}\rangle, \\
\left|\phi_{2}\right\rangle & =\frac{3 i}{5}|+\hat{\boldsymbol{z}}\rangle+\frac{4}{5}|-\hat{\boldsymbol{z}}\rangle, \text { and } \\
\left|\phi_{3}\right\rangle & =\frac{1+i}{2}|+\hat{\boldsymbol{z}}\rangle+\frac{1-i}{2}|-\hat{\boldsymbol{z}}\rangle .
\end{aligned}
$$

a) For each $\left|\phi_{i}\right\rangle$ determine an expression for the associated bra $\left\langle\phi_{i}\right|$ in terms of $\langle+\hat{\boldsymbol{z}}|$ and $\langle-\hat{\boldsymbol{z}}|$.
b) Express each bra $\left\langle\phi_{i}\right|$ as a row vector.
c) Use bra and ket operations to calculate each of $\left\langle\phi_{i} \mid \phi_{j}\right\rangle$. Note: You can use $\left\langle\phi_{j} \mid \phi_{i}\right\rangle=$ $\left(\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right)^{*}$ to reduce the number of calculations.

