Quantum Theory I: Class Exam II

21 April 2022

Name: \qquad Total:
/50

Instructions

- There are 5 questions on 10 pages.
- Show your reasoning and calculations and always explain your answers.

Physical constants and useful formulae

Charge of an electron
Planck's constant
Mass of electron

$$
\begin{aligned}
& e=-1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{Js} \quad \hbar=1.05 \times 10^{-34} \mathrm{Js} \\
& m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=511 \times 10^{3} \mathrm{eV} / \mathrm{c}^{2} \\
& m_{p}=1.673 \times 10^{-27} \mathrm{~kg}=938.3 \times 10^{6} \mathrm{eV} / \mathrm{c}^{2} \\
& m_{n}=1.675 \times 10^{-27} \mathrm{~kg}=939.6 \times 10^{6} \mathrm{eV} / \mathrm{c}^{2} \\
& \hat{\mathbf{n}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}} \\
& |+\hat{\boldsymbol{n}}\rangle=\cos (\theta / 2)|+\hat{\boldsymbol{z}}\rangle+e^{i \phi} \sin (\theta / 2)|-\hat{\boldsymbol{z}}\rangle \\
& |-\hat{\boldsymbol{n}}\rangle=\sin (\theta / 2)|+\hat{\boldsymbol{z}}\rangle-e^{i \phi} \cos (\theta / 2)|-\hat{\boldsymbol{z}}\rangle
\end{aligned}
$$

Mass of proton
Mass of neutron
Spherical coordinates
Spin $1 / 2$ state
Spin $1 / 2$ state

Euler relation $\quad e^{i \alpha}=\cos \alpha+i \sin \alpha$
Spin observables $\quad \hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) \quad \hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Rep. in $| \pm \hat{\mathbf{z}}\rangle$ basis $\quad \hat{R}(\varphi \boldsymbol{n})=\left(\begin{array}{cc}\cos \left(\frac{\varphi}{2}\right)-i \sin \left(\frac{\varphi}{2}\right) \cos \theta & -i \sin \left(\frac{\varphi}{2}\right) e^{-i \phi} \sin \theta \\ -i \sin \left(\frac{\varphi}{2}\right) e^{i \phi} \sin \theta & \cos \left(\frac{\varphi}{2}\right)+i \sin \left(\frac{\varphi}{2}\right) \cos \theta\end{array}\right)$

Physical constants and useful formulae

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a^{n}=\frac{a}{1-a} \quad \text { if }|a|<1 . \\
& \sum_{n=0}^{\infty} \frac{a^{n}}{n!}=e^{a} \\
& \sum_{n=0}^{\infty} n \frac{a^{n}}{n!}=a e^{a} \\
& \int \sin (a x) \sin (b x) \mathrm{d} x=\frac{\sin ((a-b) x)}{2(a-b)}-\frac{\sin ((a+b) x)}{2(a+b)} \quad \text { if } a \neq b \\
& \int \sin (a x) \cos (a x) \mathrm{d} x=\frac{1}{2 a} \sin ^{2}(a x) \\
& \int \sin ^{2}(a x) \mathrm{d} x=\frac{x}{2}-\frac{\sin (2 a x)}{4 a} \\
& \int x \sin ^{(a x) \mathrm{d} x}=\frac{\sin (a x)}{a^{2}}-\frac{x \cos (a x)}{a} \\
& \int x^{2} \sin ^{2}(a x) \mathrm{d} x=\frac{2 x^{2}}{a} \sin (a x)+\left(\frac{2}{a^{3}}-\frac{x^{2}}{a}\right) \cos (a x) \\
& \int x \sin ^{2}(a x) \mathrm{d} x=\frac{x^{2}}{4}-\frac{x \sin (2 a x)}{4 a}-\frac{\cos (2 a x)}{8 a^{2}} \\
& \int x^{2} \sin ^{2}(a x) \mathrm{d} x=\frac{x^{3}}{6}-\frac{x^{2}}{4 a} \sin (2 a x)-\frac{x}{4 a^{2}} \cos (2 a x)+\frac{1}{8 a^{3}} \sin (2 a x) \\
& \int_{-\infty}^{\infty} e^{-\alpha x^{2}+\beta x} \mathrm{~d} x=\sqrt{\frac{\pi}{\alpha}} e^{\beta^{2} / 4 \alpha} \\
& \int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}+\beta x} \mathrm{~d} x=\frac{\left(\beta^{2}+2 \alpha\right) \sqrt{\pi}}{4 \alpha^{5 / 2}} e^{\beta^{2} / 4 \alpha} \quad \int_{-\infty}^{\infty} x e^{-\alpha x^{2}+\beta x} \mathrm{~d} x=\frac{\beta \sqrt{\pi}}{2 \alpha^{3 / 2}} e^{\beta^{2} / 4 \alpha} \\
& \int_{-\infty}^{\infty} x^{3} e^{-\alpha x^{2}+\beta x} \mathrm{~d} x=\frac{\beta\left(\beta^{2}+6 \alpha\right) \sqrt{\pi}}{8 \alpha^{7 / 2}} e^{\beta^{2} / 4 \alpha}
\end{aligned}
$$

Question 1

A spin- $1 / 2$ particle is initially in the state $|+\hat{\boldsymbol{y}}\rangle$ and it is then placed in a constant magnetic field $\mathbf{B}=B_{0} \hat{\mathbf{x}}$.
a) Show that the Hamiltonian has the form

$$
\hat{H}=\frac{\hbar \omega}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

and determine an expression for ω in terms of the particle mass m, charge q and g factor g.
b) Determine an expression for the state of the particle after it has been in the field for time t.
c) Determine an expression, in terms of ω_{0}, for the time should pass after the particle entered the field until it first reaches a state where an SG $\hat{\boldsymbol{z}}$ measurement yields $S_{z}=\hbar / 2$ with certainty.

Question 2

Do either part a) or part b) for full credit.
a) A Mach-Zehnder interferometer consists of an arrangement of two beam splitters, $B S_{1}$ and $B S_{2}$, two mirrors, M_{1} and M_{2}, and two detectors as illustrated. Note that the reflective side of B_{1} is down and right and that of B_{2} is up and left. Ignore the thickness of the glass in the beam-splitters and assume that they reflect 50% of the beam and transmit 50%.

The unitary operator for the beam splitters are

$$
\hat{U}_{\mathrm{BS} 1} \leftrightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad \hat{U}_{\mathrm{BS} 2} \leftrightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

That for passage between the beam splitters (this includes the phase shifters) is

$$
\hat{U}_{\mathrm{PS}}=\left(\begin{array}{cc}
e^{i \varphi_{0}} & 0 \\
0 & e^{i \varphi_{1}}
\end{array}\right) .
$$

Suppose that a single photon is in the state $|0\rangle$ prior to the first beam splitter. Determine the probability with which it will emerge in the detector D_{0}. Determine the most general relationship between φ_{0} and φ_{1} such that the photon is equally likely to arrive in either detector.

Question 2 continued ...
b) A state of light can be represented by

$$
|\Psi\rangle=e^{-9 / 2} \sum_{n=0}^{\infty} \frac{3^{n}}{\sqrt{n!}}|n\rangle
$$

where $|n\rangle$ is a state such that a measurement of the number of photons yields exactly n. Suppose that the number of photons is measured. Determine the probability with which the measurement yields exactly zero photons and the expectation value of the number of photons.

Question 3

Particles of mass m are each in an infinite well with potential

$$
V(x)= \begin{cases}0 & 0 \leqslant x \leqslant L \\ \infty & \text { otherwise }\end{cases}
$$

The (position) wavefunction corresponding to the $n^{\text {th }}$ energy eigenstate, $\left|\phi_{n}\right\rangle$, with energy $E_{n}=n^{2} \pi^{2} \hbar^{2} / 2 m L^{2}$ is

$$
\phi_{n}(x)= \begin{cases}\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) & 0 \leqslant x \leqslant L \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that, at one instant, the position space wavefunction for the state of the particle is restricted to half of the well and is

$$
\Psi(x)= \begin{cases}\sqrt{\frac{960}{L^{5}}} x\left(x-\frac{L}{2}\right) & 0 \leqslant x \leqslant \frac{L}{2} \\ 0 & \text { otherwise }\end{cases}
$$

This is normalized. Determine the probability with which an energy measurement will yield the outcome $E=4 \pi^{2} \hbar^{2} / 2 m L^{2}$.

Question 4

Suppose that, at one instant, a particle in an infinite square well is known to be in one of the states

$$
\begin{aligned}
\left|\Psi_{A}\right\rangle & =\frac{1}{\sqrt{2}}\left|\phi_{2}\right\rangle+\frac{i}{\sqrt{2}}\left|\phi_{3}\right\rangle \\
\left|\Psi_{B}\right\rangle & =\frac{1}{\sqrt{2}}\left|\phi_{2}\right\rangle-\frac{i}{\sqrt{2}}\left|\phi_{3}\right\rangle
\end{aligned}
$$

where $\left|\phi_{n}\right\rangle$ are energy eigenstates. Would measuring the energy of the particle enable you to determine whether the particle was in state A or state B with certainty, with some likelihood of success or neither? Explain your answer.

Question 5

A particle can move in one dimension. Its position space wavefunction is given by

$$
\Psi(x)=\left(\frac{1}{\pi a^{2}}\right)^{1 / 4} e^{i p_{0} x / \hbar} e^{-x^{2} / 2 a^{2}}
$$

where p_{0} has units of momentum.
a) Determine an expression for the momentum space wavefunction.
b) Describe qualitatively what you would expect for the outcomes of a momentum measurement on a particle in this state.

