Question 1

Let \hat{i} denote a unit vector along the x axis, \hat{j} a unit vector along the y axis, and \hat{k} denote a unit vector along the z axis. Suppose that

$$\vec{A} = 3\hat{i}$$
$$\vec{B} = 2\hat{j}$$

Which of the following is true?

1.
$$\vec{A} \times \vec{B} = 0$$
.
2. $\vec{A} \times \vec{B} = 6\hat{i}$.
3. $\vec{A} \times \vec{B} = 6\hat{i} + 6\hat{j}$.
4. $\vec{A} \times \vec{B} = 6\hat{k}$.
5. $\vec{A} \times \vec{B} = -6\hat{k}$.

Phys 131 Spring 2023

Warm Up Question 1

Consider two displacement vectors in the xy plane. Vector \vec{A} is 5 m long and points along the positive x axis. Vector \vec{B} is 8 m long and points along the positive y axis. Is $\vec{A} \times \vec{B}$ equal to $\vec{B} \times \vec{A}$? Explain your answer.

- 1. No. Directions are different.
- 2. No. Cross product is not commutative.
- 3. Yes. Order does not matter with multiplication.
- 4. Yes. Order does not matter with the dot product.
- 5. Yes. They are both zero.

2 May 2023

Warm Up Question 2

A disk lies in the xy plane. A string pulls at the (right – correction) edge of the disk in the +y direction. What is the direction of the torque vector? Explain your answer.

- 1. Zero. It pulls straight out.
- 2. Along +y.
- 3. Along +z.
- 4. Along -z.
- 5. Postive.