Question 1

Two blocks are connected as illustrated. The surfaces are frictionless and the pulley is massless. Suppose that the acceleration of the block on the ramp was known to be $4.0 \mathrm{~m} / \mathrm{s}^{2}$ up the ramp and one wanted to obtain the tension, T, in the rope.

Using tilted axes with x along the ramp, which of the following would be correct for the block on the ramp?

1. $\sum F_{x}=\left(m_{1}\right) 4.0 \mathrm{~m} / \mathrm{s}^{2}$
2. $\sum F_{x}=\left(m_{1}\right) 9.8 \mathrm{~m} / \mathrm{s}^{2}$
3. $\sum F_{x}=\left(m_{1}\right)\left(4.0 \mathrm{~m} / \mathrm{s}^{2}+9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
4. $\sum F_{x}=\left(m_{1}\right)\left(4.0 \mathrm{~m} / \mathrm{s}^{2}-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
5. $\sum F_{x}=\left(m_{1}+m_{2}\right) 4.0 \mathrm{~m} / \mathrm{s}^{2}$

Question 2

Two blocks are connected as illustrated. The surfaces are frictionless and the pulley is massless. Suppose that the acceleration of the block on the ramp was known to be a up the ramp and one wanted to obtain the tension, T, in the rope.

Using tilted axes with x along the ramp, which of the following would be correct for the block on the ramp?

1. $T>m_{1} a$
2. $T<m_{1} a$
3. $T=m_{1} a$

Question 3

A cart is connected to a suspended mass as illustrated. A hand gives the cart a brief, strong push to the left. After the cart leaves the hand it continues to move to the left for a while.

Which of the following is true about the tension in the string after the cart has left the hand and while it moves left?

1. $T=m_{\text {susp }} g$
2. $T<m_{\text {susp }} g$
3. $T>m_{\text {susp }} g$
