Constructing a Vector from Unit Vectors

How the illustrated vector $\overrightarrow{\mathrm{A}}$ is decomposed into unit vectors

$$
\overrightarrow{\mathrm{A}}=5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}
$$

Constructing a Vector from Unit Vectors

How the illustrated vector $\overrightarrow{\mathrm{A}}$ is decomposed into unit vectors

$$
\overrightarrow{\mathrm{A}}=-4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}
$$

Constructing a Vector from Unit Vectors

How the illustrated vector $\overrightarrow{\mathrm{A}}$ is decomposed into unit vectors

$$
\overrightarrow{\mathrm{A}}=3.5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}
$$

Warm Up Question 1

Let $\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$ and suppose that $\overrightarrow{\mathrm{B}}=\alpha \overrightarrow{\mathrm{A}}$ for some real number α. Explain whether it is possible that

$$
\overrightarrow{\mathrm{B}}=20 \hat{\mathrm{i}}-30 \hat{\mathrm{j}} .
$$

1. Yes. Use $\alpha=10$.
2. Yes. Use $\alpha=-10$.
3. No. The direction of \vec{B} is neither the direction of $\overrightarrow{\mathrm{A}}$ nor exactly the opposite of \vec{A}.
4. No. If α were positive both the \hat{i} and \hat{j} components of $\overrightarrow{\mathrm{B}}$ would be positive. If it were negative they would both be negative.
5. No. It requires multiplication by both positive and negative.

Warm Up Question 2

A rhinoceros beetle walks along a sheet a graph paper in a straight line starting at the point $(5,5)$ and ending at the point $(5,0)$. Describe the direction of its average velocity vector for this motion. Explain your answer.

1. Negative y. The displacement is $\Delta \overrightarrow{\mathrm{r}}=-5 \hat{\mathrm{j}}$
2. Left. Approaches the origin.

Question 1

A ball follows the indicated trajectory. Its positions (units are meters) at two instants are indicated.

Which of the following best represents its average velocity between the two instants?

1. $\overrightarrow{\mathrm{v}}_{\mathrm{avg}}=1 \mathrm{~m} / \mathrm{s}$
2. $\overrightarrow{\mathrm{v}}_{\mathrm{avg}}=1 \mathrm{~m} / \mathrm{s}$ in direction \longrightarrow
3. $\overrightarrow{\mathrm{v}}_{\mathrm{avg}}=1 \mathrm{~m} / \mathrm{s}$ in direction \downarrow
4. $\overrightarrow{\mathrm{V}}_{\mathrm{avg}}=1 \mathrm{~m} / \mathrm{s}$ in direction

5. $\overrightarrow{\mathrm{v}}_{\mathrm{avg}}=1.5 \mathrm{~m} / \mathrm{s}$ in direction

6. $\overrightarrow{\mathrm{v}}_{\mathrm{avg}}$ has magnitude larger than $1.5 \mathrm{~m} / \mathrm{s}$.

Question 2

Various balls follow the illustrated trajectories.

Which balls have the same average velocity in the interval from 2 s to 4 s ?

1. All have the same.
2. None have the same.
3. A and B.
4. B and C.
5. A and C.

Question 3

A projectile follows the indicated trajectory. Its positions (units are meters) at two instants are indicated.

Which of the following is true about the components of the velocity, $\overrightarrow{\mathrm{v}}_{0}$, at the indicated earlier moment?

1. $v_{0 x}>0$ and $v_{0 y}>0$
2. $v_{0 x}>0$ and $v_{0 y}<0$
3. $v_{0 x}<0$ and $v_{0 y}>0$
4. $v_{0 x}<0$ and $v_{0 y}<0$
5. At least one of $v_{0 x}$ and $v_{0 y}$ is zero.
