Constructing a Vector from Unit Vectors

How the illustrated vector $\vec{\boldsymbol{A}}$ is decomposed into unit vectors

$$\vec{A} = 5\hat{i} + 2\hat{j}$$

Constructing a Vector from Unit Vectors

How the illustrated vector $\vec{\boldsymbol{A}}$ is decomposed into unit vectors

$$\vec{A} = -4\hat{i} + 2\hat{j}$$

Constructing a Vector from Unit Vectors

How the illustrated vector $\vec{\boldsymbol{A}}$ is decomposed into unit vectors

$$\vec{A} = 3.5\hat{i} - 2\hat{j}$$

Warm Up Question 1

Let $\vec{A}=2\hat{i}+3\hat{j}$ and suppose that $\vec{B}=\alpha\vec{A}$ for some real number α . Explain whether it is possible that

$$\vec{B} = 20\hat{i} - 30\hat{j}.$$

- 1. Yes. Use $\alpha = 10$.
- 2. Yes. Use $\alpha = -10$.
- 3. No. The direction of \vec{B} is neither the direction of \vec{A} nor exactly the opposite of \vec{A} .
- 4. No. If α were positive both the \hat{i} and \hat{j} components of \vec{B} would be positive. If it were negative they would both be negative.
- 5. No. It requires multiplication by both positive and negative.

Warm Up Question 2

A rhinoceros beetle walks along a sheet a graph paper in a straight line starting at the point (5,5) and ending at the point (5,0). Describe the direction of its average velocity vector for this motion. Explain your answer.

- 1. Negative y. The displacement is $\Delta \vec{r} = -5\hat{j}$
- 2. Left. Approaches the origin.

Question 1

A ball follows the indicated trajectory. Its positions (units are meters) at two instants are indicated.

Which of the following best represents its average velocity between the two instants?

- 1. $\vec{v}_{avg} = 1 \, m/s$
- 2. $\vec{v}_{avg} = 1 \, m/s$ in direction \longrightarrow
- 3. $\vec{v}_{avg} = 1 \, m/s$ in direction \checkmark
- 4. $\vec{\mathrm{v}}_{\mathrm{avg}} = 1 \, \mathrm{m/s}$ in direction
- 5. $\vec{v}_{avg} = 1.5 \, m/s$ in direction
- 6. \vec{v}_{avg} has magnitude larger than $1.5\,\mathrm{m/s}.$

Question 2

Various balls follow the illustrated trajectories.

Which balls have the same average velocity in the interval from $2\,\mathrm{s}$ to $4\,\mathrm{s}$?

- 1. All have the same.
- 2. None have the same.
- 3. A and B.
- 4. B and C.
- 5. A and C.

Question 3

A projectile follows the indicated trajectory. Its positions (units are meters) at two instants are indicated.

Which of the following is true about the components of the velocity, \vec{v}_0 , at the indicated earlier moment?

- 1. $v_{0x} > 0$ and $v_{0y} > 0$
- 2. $v_{0x} > 0$ and $v_{0y} < 0$
- 3. $v_{0x} < 0$ and $v_{0y} > 0$
- 4. $v_{0x} < 0$ and $v_{0y} < 0$
- 5. At least one of v_{0x} and v_{0y} is zero.