Fundamental Mechanics: Final Exam v2

14 December 2022

Name: \qquad Total:
/150

Instructions

- There are 16 questions on 10 pages.
- Show your reasoning and calculations and always explain your answers.

Physical constants and useful formulae

$$
g=9.80 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \quad \text { Disk/solid cylinder: } I=\frac{1}{2} M R^{2}
$$

Hoop/hollow cylinder: $I=M R^{2} \quad$ Hollow sphere: $I=\frac{2}{3} M R^{2} \quad$ Solid sphere: $I=\frac{2}{5} M R^{2}$

Question 1

A cart is launched horizontally. A graph of position versus time is illustrated.
a) Which of the following (choose one) is true regarding the velocity of the cart during the period for which the motion is graphed?
i) $v \geqslant 0$ at all times.
ii) $v \leqslant 0$ at all times.
iii) At some times $v>0$ and at others $v<0$.

b) Which of the following (choose one) is true regarding the acceleration of the cart during the period for which the motion is graphed?
i) $a=0$ at all times.
ii) $a \geqslant 0$ at all times.
iii) $a \leqslant 0$ at all times.
iv) At some times $a>0$ and at others $a<0$.

Question 2

a) An aircraft travels horizontally in a straight line 200 m above the ground and with constant speed of $100 \mathrm{~m} / \mathrm{s}$. A ball is dropped from the airplane. Determine the time taken for the ball to hit the ground. Ignore air resistance.
b) At the instant that the ball hits the ground is the aircraft directly above the ball, ahead of the ball or behind the ball? Explain your answer.

Question 3

A snail moves at a constant speed on a horizontal surface. Its trajectory as viewed from above is illustrated. Which of the following (choose one) regarding the snail's instantaneous acceleration, $\overrightarrow{\mathbf{a}}$, at point B is true?
i) $\overrightarrow{\mathbf{a}}=0$.
ii) $\overrightarrow{\mathbf{a}} \neq 0$ and points \downarrow.

iii) $\overrightarrow{\mathbf{a}} \neq 0$ and points \rightarrow.
iv) $\overrightarrow{\mathbf{a}} \neq 0$ and points \leftarrow.

Question 4

A 50 kg box lies on an inclined ramp. The coefficient of static friction between the box and the ramp is 0.18 and the coefficient of kinetic friction is 0.10 . You push parallel to the ramp upward against the block.
a) Determine the minimum force with which you must push to keep the box at rest.
b) The entire situation is repeated except that the block slides down the ramp at a constant speed. Will the minimum force produced by the hand to do this be different to what it would be to keep the block at rest? Explain your answer.

Question 5

An ant and a bug walk along straight wires. The graph illustrates their velocities vs. time. They have the same mass. Which of the following (choose one) is true at 2.0 s ?
i) The net force on the ant is the same as on the bug.
ii) The net force on the ant is larger than the net force on the bug.
iii) The net force on the ant is smaller than the net force on the bug.

Briefly explain your answer.
/6

Question 6

A 0.40 kg object slides around the inside a frictionless vertical hoop with radius 0.90 m . The speed of the object at the bottom of the hoop is $0.30 \mathrm{~m} / \mathrm{s}$. Determine the normal force exerted by the hoop on the object at the bottom.

Question 7

Two blocks, connected by a rope, and with indicated masses can move along a frictionless horizontal surface. The blocks are initially at rest and then a rope
 pulls right with tension 10 N .
a) Determine the acceleration of the blocks while the rope pulls and use this to determine the tension in the rope connecting the blocks.
b) Suppose that the blocks were flipped with the 2.0 kg block on the right, the 3.0 kg block on the left and the rope pulling to the right with 10 N as before. Would the tension in the connecting rope be larger than, smaller than or the same as that for the original arrangement? Explain your answer.

Question 8

Two balls are fired with the same speeds from a bridge above a lake. Ball A is fired horizontally and ball B is is fired at an angle of 30° below the horizontal. Both eventually hit the lake. Which of the following (choose one) is true at the instant just before the balls hit the lake? Ignore air resistance.
i) The speed of ball A is the same as that of B .
ii) The speed of ball A is smaller than that of B .
iii) The speed of ball A is larger than that of B .

Question 9

Determine the dot product, $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$, of the two illustrated vectors. The axis units are in meters.

Question 10

A person and sled (combined mass 100 kg) move along a horizontal icy surface with speed $2.0 \mathrm{~m} / \mathrm{s}$. The person holds a 20 kg rock which initially moves moves along with the sled. The person subsequently throws the rock horizontally and after this the person and sled are at rest. Determine the speed with which the rock must be thrown for this to happen.

Question 11

Two 0.20 kg blocks can slide along the illustrated frictionless surface. The right end of the track is 1.5 m higher than the left end. Block B is initially at rest to the left of a spring which is relaxed and which has spring constant $100 \mathrm{~N} / \mathrm{m}$. The right end of the spring
 is fixed against a rigid wall. Block A is launched to the right with speed $20 \mathrm{~m} / \mathrm{s}$ and it collides with and sticks to block B. The two subsequently move together.
a) Determine the speed of the blocks immediately after the collision.
b) Determine the maximum compression of the spring after the blocks collide with it.

Question 12

Two blocks are connected by a massless string that runs over a 4 kg pulley. The pulley can rotate about a frictionless axle and, when it does this, the string does not slip. Let $T_{\text {left }}$ be the tension in the string on the left and $T_{\text {right }}$ the tension in the string on the right. Which of the following (choose one) is true?
i) $T_{\text {right }}=T_{\text {left }}$ regardless of the blocks' motion.

ii) $T_{\text {right }}>T_{\text {left }}$ regardless of the blocks' motion.
iii) $T_{\text {right }}<T_{\text {left }}$ regardless of the blocks' motion.
iv) Whether $T_{\text {right }}$ is larger or smaller depends on whether the block on the right moves up or down.

Question 13

A 0.250 kg solid uniform cylinder with radius 0.10 m is held at rest on a track as illustrated. At this instant, the bottom of the cylinder is exactly 2.0 m above the Earth. The cylinder is released and rolls without slipping along the track. The end of the track is at a height of 0.40 m from the Earth. Determine the maximum speed of the cylinder as it moves along the track.

Question 14

A 40 kg solid disk with radius 2.0 m rotates counterclockwise about an axle through its center. At an initial moment the disk rotates with angular $40 \mathrm{rad} / \mathrm{s}$. A brake pressing on the disk applies a constant kinetic frictional force at the point labeled B and stops the disk 10 s after the initial moment. The distance from B to the center of the disk is 1.5 m . The mass in the disk is uniformly distributed.
a) Determine the angular acceleration of the disk.

b) Determine the magnitude of the frictional force exerted by the brake on the disk.

Question 15

Two satellites, P and Q, orbit Earth in circles. They are the same distance from Earth. The mass of P is ten times the mass of Q . Let a_{P} be the magnitude of the acceleration of P and a_{Q} be the magnitude of the acceleration of Q . Assume that the only force acting on each satellite is Earth's gravity. Which of the following (choose one) is true?
i) $a_{Q}=\frac{1}{10} a_{P}$
ii) $a_{Q}=a_{P}$
iii) $a_{Q}=10 a_{P}$

Question 16

A 2000 kg satellite orbits Jupiter (mass $1.9 \times 10^{27} \mathrm{~kg}$ and radius $7.0 \times 10^{7} \mathrm{~m}$) at a constant speed in a circle. The distance from the center of Jupiter to the satellite is $2.0 \times 10^{9} \mathrm{~m}$. Starting with and using Newton's Second Law, derive an expression for the satellite's speed and use this to determine the time taken to complete one orbit.

