Distances, lengths, sizes

Object	Distance/length
Moon's circumference	10921000 m
Denver to Grand Junction (shortest distance)	341181 m
Length of a football field	109.7 m
Width of computer chip	0.0030 m
Width of flu virus	0.000009 m

Distances, lengths, sizes

Object	Distance/length (meters)	Distance/length (kilometers)
Moon's circumference	10921000 m	10921 km
Denver to GJ	341181 m	341.181 km
Length of a football field	109.7 m	0.1097 km
Width of computer chip	0.0030 m	0.0000030 km
Width of flu virus	0.000009 m	0.000000009 km

Question 1

Derived distance units are:
$1 \mathrm{~km}=1000 \mathrm{~m}$
$1 \mathrm{~mm}=0.001 \mathrm{~m}$

Which of the following is true regarding the length of any single object?

1. The length recorded in kilometers is a larger number than in meters.
2. The length recorded in kilometers is a smaller number than in meters.
3. The length recorded is the same number in all units.

Question 2

Consider
0.0001

Which of the following represents 0.0001 ?

1. 10^{4}
2. 10^{3}
3. 10^{-4}
4. 10^{-3}

Question 3

Consider

$$
\frac{10^{5} \times 10^{-2}}{10^{4}}
$$

Which of the following does this yield?

1. 0.01
2. 0.1
3. 1
4. 10
5. 100

Question 4

Consider

$$
10^{3} \times 10^{2}
$$

Which of the following does this yield?

1. 10^{1}
2. 10^{2}
3. 10^{3}
4. 10^{5}
5. 10^{6}

Question 5

Consider

98.7×10^{-2}

Which of the following expresses this in decimal notation?

1. 9870
2. 987
3. 98.7
4. 9.87
5. 0.987

Question 6

Consider the number
0.00234

Which of the following is equivalent?

1. 2.34×10^{-3}
2. 2.34×10^{-2}
3. 2.34×10^{-1}
4. 2.34×10^{2}
5. 2.34×10^{3}
