Interference of Pulses

A snapshot of a string at $t = 0 \,\mathrm{s}$ displays two pulses traveling toward each other. The horizontal units are cm. Suppose that the pulses travel with speed $1 \,\mathrm{cm/s}$.

Interference of Pulses

Two pulses approach each other on a string. At an initial instant the string is as illustrated and the pulses travel with speed 1 unit per second.

Which of the following is an accurate depiction of the entire string at an instant 2 seconds later?

Two pulses approach each other on a string. At an initial instant the string is as illustrated and the pulses travel with speed 1 unit per second.

Which of the following is an accurate depiction of the entire string at an instant 2 seconds later?

General Interference I

Snapshots of two waves at $t = 0 \, \mathrm{s}$ in the same medium are illustrated whose phase difference is $\Delta \phi = 0$.

General Interference II

Snapshots of two waves at $t = 0 \,\mathrm{s}$ in the same medium are illustrated whose phase difference is $\Delta \phi = \frac{\pi}{4}$.

General Interference III

Snapshots of two waves at $t = 0 \,\mathrm{s}$ in the same medium are illustrated whose phase difference is $\Delta \phi = \frac{\pi}{2}$.

General Interference IV

Snapshots of two waves at $t = 0 \,\mathrm{s}$ in the same medium are illustrated whose phase difference is $\Delta \phi = \frac{3\pi}{4}$.

General Interference V

Snapshots of two waves at $t = 0 \,\mathrm{s}$ in the same medium are illustrated whose phase difference is $\Delta \phi = \pi$.

Constructive Interference

Snapshots of two waves at one instant in the same medium.

The superposition of the two waves is:

Destructive Interference

Snapshots of two waves at one instant in the same medium.

Waves from Two Sources

Sources coincide. Constructive interference results.

Sources offset by one wavelength. Constructive interference results.

Waves from Two Sources

Sources offset by two wavelengths. Constructive interference results.

Sources offset by two wavelengths. Constructive interference results.

Waves from Two Sources

Sources offset by a half wavelength. Destructive interference results.

Sources offset by one and a half wavelengths. Destructive interference results.

Snapshots of two waves in the same medium are as illustrated.

By what distance is wave 2 shifted from wave 1?

2. 2λ

3. λ

4.

5.

 $\frac{\lambda}{2}$

 $\frac{\lambda}{4}$

Snapshots of two waves in the same medium are as illustrated.

By what distance is wave 2 shifted from wave 1?

 $\frac{\lambda}{2}$

 $\frac{\lambda}{4}$

4.

5.