Electromagnetic Wave Propagation Along One Line

Electromagnetic wave propagating along +x direction. Red indicates the electric field, blue the magnetic field.

Electromagnetic Wave Propagation Along Several Directions

Electromagnetic waves produced by charge oscillating up and down the y axis. Red indicates the electric field.

Question 1

Snapshots of three waves on strings are illustrated.

Rank the waves in order of wavelength.

- 1. $\lambda_{A} > \lambda_{B} = \lambda_{C}$ 2. $\lambda_{A} < \lambda_{B} = \lambda_{C}$ 3. $\lambda_{A} = \lambda_{B} < \lambda_{C}$
- 4. $\lambda_{\rm A} = \lambda_{\rm B} > \lambda_{\rm C}$
- 5. $\lambda_A = \lambda_B = \lambda_C$

11 April 2022

Question 2

The electric field for an electromagnetic wave at one instant is illustrated.

Which of the following best represents the wavenumber?

1.
$$k = 30$$

2. $k = 40$
3. $k = \frac{2\pi}{20}$
4. $k = \frac{2\pi}{30}$
5. $k = \frac{2\pi}{40}$

Sinusoidal Waves: Wavenumber

Waves described by various sinusoidal functions.

Sinusoidal Waves: Phase

Waves described by various sinusoidal functions.

Question 3

A wave at one instant is illustrated. The equation for this wave has form

 $y = A \sin\left(\frac{2\pi}{40}x + \phi\right).$

y

Which of the following best represents the phase?

1.
$$\phi = 0$$

2. $\phi = \frac{\pi}{4}$
3. $\phi = \frac{\pi}{2}$
4. $\phi = \pi$
5. $\phi = \frac{3\pi}{2}$