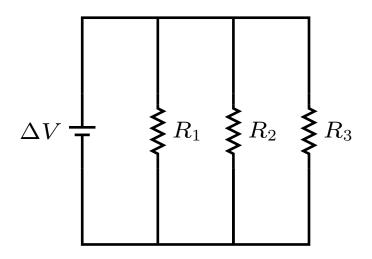

Question 1

Consider the following circuit, where $R_1 = R_2 = R_3$.



Consider the current through resistor 3 when the switch is open versus when it is closed.

- 1. $I_{\text{closed}} = \frac{2}{3} I_{\text{open}}$
- 2. $I_{\text{closed}} = I_{\text{open}}$
- 3. $I_{\text{closed}} = \frac{3}{2} I_{\text{open}}$

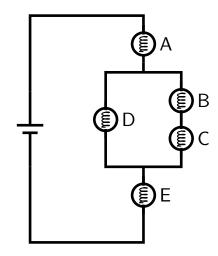
Question 2

Consider the following circuit, where $R_1=R_2=10\,\Omega,\,R_3=20\,\Omega.$

Which of the following is true of the equivalent resistance of the entire combination?

1.
$$R_{\rm eq} = 40 \, \Omega$$

2.
$$20 \Omega \leqslant R_{\rm eq} < 40 \Omega$$


3.
$$10 \Omega \leqslant R_{\rm eq} < 20 \Omega$$

4.
$$R_{\rm eq}=10\,\Omega$$

5.
$$R_{\rm eq} < 10 \, \Omega$$

Question 3

Several identical bulbs are connected in a circuit as illustrated.

Assume that the bulbs obey Ohm's law.

Which of the following statements about the powers produced by bulbs B versus D are true (choose one)?

1.
$$P_D = 4P_B$$

2.
$$P_D = 2P_B$$

3.
$$P_D = P_B$$

4.
$$P_D = \frac{1}{2} P_B$$

5.
$$P_D = \frac{1}{4} P_B$$