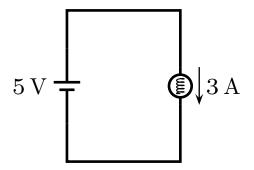

1 March 2022 Phys 132 Spring 2022

Question 1

A bulb is connected to a battery as illustrated.

The current through the bulb and potential difference across the battery are indicated. The wires offer negligible resistance.

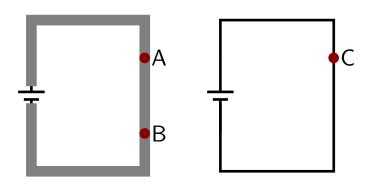

Which of the following is true?

- 1. In $10 \,\mathrm{s}$ the total charge that flows through the bulb is $3 \,\mathrm{C}$ and through the battery $3 \,\mathrm{C}$.
- 2. In $10\,\mathrm{s}$ the total charge that flows through the bulb is $5\,\mathrm{C}$ and through the battery $5\,\mathrm{C}$.
- 3. In $10\,\mathrm{s}$ the total charge that flows through the bulb is $30\,\mathrm{C}$ and through the battery $5\,\mathrm{C}$.
- 4. In $10\,\mathrm{s}$ the total charge that flows through the bulb is $30\,\mathrm{C}$ and through the battery $30\,\mathrm{C}$.
- 5. In $10\,\mathrm{s}$ the total charge that flows through the bulb is $30\,\mathrm{C}$ and through the battery $50\,\mathrm{C}$.

1 March 2022 Phys 132 Spring 2022

Question 2

A bulb is connected to a battery as illustrated.


The current and potential difference across the battery are indicated. The wires offer negligible resistance.

In $2 \, \mathrm{s}$ a total of $6 \, \mathrm{C}$ moves from the positive to negative terminal of the battery. Which of the following is true?

- 1. The energy lost by this charge is 0 J.
- 2. The energy lost by this charge is 3 J.
- 3. The energy lost by this charge is 5 J.
- 4. The energy lost by this charge is 6 J.
- 5. The energy lost by this charge is $30 \, \mathrm{J}$.

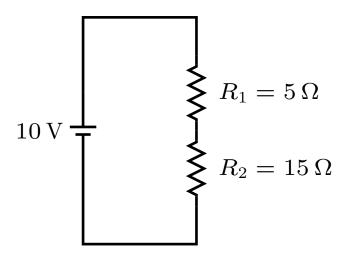
Question 3

Two identical batteries are connected in two different scenarios as illustrated. In the scenario on the left a thicker wires (smaller resistance) are used.

Which of the following represents the rank of the magnitude of the currents?

1.
$$I_{A} = I_{B} = I_{C}$$

2.
$$I_{A} = I_{B} > I_{C}$$


3.
$$I_{C} > I_{A} = I_{B}$$

4.
$$I_{\mathsf{B}} > I_{\mathsf{A}} = I_{\mathsf{C}}$$

5.
$$I_{C} = I_{A} > I_{B}$$

Question 4

Consider the following circuit.

Which of the following best represents the potential difference across each of the resistors?

- $1. \quad \Delta V_1 = \frac{1}{3} \, \Delta V_2$
- $2. \quad \Delta V_1 = \frac{1}{2} \, \Delta V_2$
- 3. $\Delta V_1 = \Delta V_2$
- 4. $\Delta V_1 = 3\Delta V_2$
- 5. Not enough info/none of the above.