Question 1

A possible antisymmetric energy eigenstate for the harmonic oscillator is as illustrated.

Which of the following is true?

1.
$$\langle x \rangle = 0$$

2. $\langle x \rangle > 0$

3.
$$\langle x \rangle < 0$$

Harmonic Oscillator Ground State

Ground state energy and wavefunction

Harmonic Oscillator Ground State Probability Density

Ground state probability distribution for position measurement outcomes:

Harmonic Oscillator First Excited State

First excited state (n = 1) energy and wavefunction

Harmonic Oscillator First Excited State Probability Density

► First excited state probability distribution for position measurement outcomes:

Question 2

Consider a quantum harmonic oscillator with frequency ω_0 .

Which of the following is true regarding the lowest frequency light emitted by the oscillator?

- 1. Frequency is $\omega_0/2\pi$; only occurs for $n = 1 \rightarrow n = 0$.
- 2. Frequency is $\omega_0/2\pi$; only occurs for $n = 2 \rightarrow n = 1$.
- 3. Frequency is $\omega_0/2\pi$; many ways that this can occur.
- 4. Frequency is $\omega_0/4\pi$; only occurs for $n = 1 \rightarrow n = 0$.
- 5. Frequency is $\omega_0/4\pi$; only occurs for $n = 2 \rightarrow n = 1$.

Question 3

Let

$$\psi(x) = Ax^2 - Bx$$

where A and B are positive constants.

Which of the following best represents $\hat{p}\psi$?

- 1. $p(Ax^2 Bx)$.
- 2. $-i\hbar p(Ax^2 Bx)$.
- 3. 2Ax B.
- 4. $i\hbar(2Ax B)$.
- 5. $-i\hbar(2Ax B)$.