Question 1

The Schrödinger equation for a free particle is

 $-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}=i\hbar\frac{\partial\Psi}{\partial t}.$

Consider as a possible solution the function

 $\Psi(x,t) = A \left(x - Bt\right)^2$

where A and B are constants.

Which of the following is true?

1. This is a solution regardless of A and B.

2. This is a solution if
$$x = Bt + \frac{1}{iB}$$
.

3. This is a solution if
$$x = Bt + \frac{\hbar}{2imB}$$
.

4. This cannot be a solution for all x and t.

Question 2

The Schrödinger equation for a free particle is

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}=i\hbar\frac{\partial\Psi}{\partial t}.$$
 Consider as a possible solution the function

$$\Psi(x,t) = Ae^{i(kx-\omega t)}$$

where k and ω are constants.

Which of the following is true about $\Psi(x, t)$?

- 1. This cannot be a solution regardless of k and ω .
- 2. This is a solution regardless of k and ω .
- 3. This is a solution provided that $k^2 = \omega$.
- 4. This is a solution provided that $\frac{k^2\hbar^2}{2m} = -\hbar\omega$.

5. This is a solution provided that
$$\frac{k^2\hbar^2}{2m} = \hbar\omega$$
.