Double Slit Pattern

Double slit interference pattern for two slits of negligible width.

$$I = I_0 \, \cos^2\left(\beta\right)$$

where

$$\beta = \frac{\pi d}{\lambda} \sin \theta.$$

Two slits with negligible width are separated by distance d. The intensity at angle θ on a distant screen is

 $I = I_0 \cos^2{(\beta)}$

where

$$\beta = \frac{\pi d}{\lambda} \sin \theta.$$

The intensity will clearly be a maximum when $\theta = 0$. What is the next smallest angle at which a maximum intensity occurs?

1.
$$\theta = \pi/2$$

- 2. $\theta = \pi$.
- 3. θ such that $d\sin\theta = \lambda/2$
- 4. θ such that $d\sin\theta = \lambda$

8 February 2021

Single Slit Pattern

Single slit interference pattern.

$$I = I_0 \left(\frac{\sin\alpha}{\alpha}\right)^2$$

where

$$\alpha = \frac{\pi a}{\lambda} \sin \theta.$$

8 February 2021

Double Slit Pattern: Width Included

Double slit interference pattern including width features.

$$I = I_0 \left(\frac{\sin\alpha}{\alpha}\right)^2 \cos^2\beta$$

where

$$\alpha = \frac{\pi a}{\lambda} \sin \theta$$

 and

$$\beta = \frac{\pi d}{\lambda} \sin \theta.$$

8 February 2021

Double Slit Pattern: Width Included

Double slit interference pattern including width features.

$$I = I_0 \left(\frac{\sin\alpha}{\alpha}\right)^2 \cos^2\beta$$

where

$$\alpha = \frac{\pi a}{\lambda} \sin \theta$$

and

$$\beta = \frac{\pi d}{\lambda} \sin \theta.$$

Let

 $z_1 = x + iy$

and

$$z_2 = x - iy.$$

Which of the following is true?

1. $z_1 z_2 = x^2 + y^2$ 2. $z_1 z_2 = x^2 - y^2$ 3. $z_1 z_2 = 2xy$ 4. $z_1 z_2 = 2ixy$ 5. $z_1 z_2 = x^2 + 2ixy - y^2$

Let

$$z = i(3+4i)$$

Which of the following best represents z^* ?

1.
$$i(3 - 4i)$$

2. $i(3 + 4i)$
3. $-i(3 + 4i)$
4. $-i(3 - 4i)$

Let

$$z_1 = 3 + i4$$

 $\quad \text{and} \quad$

$$z_2 = -4 + i3.$$

Which of the following is true?

1.
$$|z_1 z_2| = 0$$

2.
$$|z_1 z_2| = -5$$

3.
$$|z_1 z_2| = +5$$

4.
$$|z_1 z_2| = 25$$