
Phys 231
Spring 2021

Modern Physics: Homework 14

Due: 13 May 2021

1 Analysis of the Stern-Gerlach experiment

Suppose that a beam of particles, each with mass M and velocity ~v = vxx̂, enters a region in
which the magnetic field is

~B = (600z)ẑ

where the units of 600 are Tesla/m. This region extends in the x̂ direction for distance LB .
A detector is placed LD beyond the end of the magnetic field region. The setup is illustrated
in Fig. 1. (231S21)
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Figure 1: Question 1

a) Suppose that prior to entering the magnetic field, the z component of each particle’s
magnetic dipole moment has the same value, µz. Find an expression, in terms of M
and µz, for the acceleration of the particles while they are in the region with non-zero
magnetic field. Ignore all forces on any particle except that exerted by the magnetic
field.

b) Assume that the particles follow trajectories governed by classical mechanics until they
hit the screen. Find an expression for the location at which they strike the screen
in terms of M,µz , vx, LB and LD. Verify that it is proportional to µz and inversely
proportional to Mv2x.

Suppose that the particles have charge q and spin s and are in a state with no orbital angular
momentum. The g-factor for the particles is g = 2.

c) List the possible values of µz in terms of ~,M and q and provide expressions for the
corresponding deflections in the ẑ direction.
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d) Determine the distance between “adjacent” deflections, i.e. those corresponding to ẑ
components of spin adjacent to each other.

e) Suppose each particle produces a spot when it strikes the screen. Suppose that the beam
consists of particles whose magnetic dipole moments are randomly oriented. Describe
the pattern which will appear on the screen for particles of spin 1/2.

f) Repeat the previous question for particles of spin 1.

g) Repeat the previous question for particles of spin 3/2.

h) Repeat the previous question for particles of spin 2.

i) Suppose that your apparatus is such that LB = 0.75m and LD = 1.25m. Determine the
velocity at which hydrogen atoms, whose mass isM = 1.67×10−27 kg, must be fired into
the magnetic field such that the deflections corresponding to different z components of
spin are separated by 2.0 cm. In this case, the magnetic dipole properties of the proton
in the hydrogen atom can be ignored; the electron’s magnetic dipole is dominant.

2 NMR with protons

The nucleus of a hydrogen atom (a proton) has spin-1/2. The magnitude of the dipole moment
of the proton is 1.41× 10−26 J/T (this is the largest value possible for any single component
of the dipole moment). In a typical NMR spectrometer, such hydrogen atoms are placed in
a magnetic field with magnitude 11.75T. Determine the energy of the two states available to
the proton and the frequency of electromagnetic radiation that is emitted when the proton
makes a transition between the two spin states. (231S21)

3 Electron spin and orbital motion

An electron is a spin-1/2 particle. Assume that the electron is spherical with a radius no
larger than 10−18 m. The possible values of any single component of the spin are ±~/2. Use
this to determine the speed of any point of the equator of the electron. This speed must
be less than the speed of light. Is it possible that the electron is a solid rotating object?
(231S21)
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4 Two identical particles in an infinite square well

Consider two identical particles, each of mass M , in an infinite square well of length L. The
potential is:

U(x) =

{

0 0 6 x 6 L
∞ otherwise.

Recall that for a single particle in an infinite square well, the energy eigenfunctions are:

ψn(x) =







√

2

L
sin

(nπx

L

)

0 6 x 6 L

0 otherwise

where n = 1, 2, 3, . . . . The time-independent Schrödinger equation for the two particles is

− ~
2

2M

(

∂2ψ(x1, x2)

∂x2
1

+
∂2ψ(x1, x2)

∂x2
2

)

+ U(x1, x2)ψ(x1, x2) = Eψ(x1, x2)

where E is the energy of the joint system.

a) Show that ψ(x1, x2) = ψm(x1)ψn(x2) satisfies the time-independent Schrödinger equa-
tion and determine the corresponding energy eigenvalue, E.

b) Show that

ψ(x1, x2) =
1√
2
[ψm(x1)ψn(x2) + ψn(x1)ψm(x2)]

ψ(x1, x2) =
1√
2
[ψm(x1)ψn(x2)− ψn(x1)ψm(x2)]

satisfy the time-independent Schrödinger equation for the same energy E as in part (a).

c) Given that the symmetric and antisymmetric wavefunctions in the previous problem
have the same energy, one may ask whether there are other measurable quantities whose
outcomes provide a distinction between them. Consider position measurements. Show
that for both

ψ(x1, x2) =
1√
2
(ψm(x1)ψn(x2) + ψn(x1)ψm(x2))

ψ(x1, x2) =
1√
2
(ψm(x1)ψn(x2)− ψn(x1)ψm(x2))

where n 6= m, the expectation values of position measurement outcomes give:

〈x1〉 = 〈x2〉 =
L

2
.

Hints: This may look like a lot of integration but you have done most of the integrals
before. Set up the integrals and apply the following results for a single particle in an
infinite square well:

∫

∞

−∞

ψ∗

j (x)ψk(x) dx =

{

0 j 6= k
1 j = k

∫

∞

−∞

x|ψk(x)|2 dx =
L

2
.
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d) To obtain an observable difference consider the square of the distance between the two
particles

〈

(x1 − x2)
2

〉

.

Use the results in the hints, which you do not need to prove, to show that this can
distinguish between the following states:

ψ(x1, x2) =
1√
2
(ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2))

ψ(x1, x2) =
1√
2
(ψ1(x1)ψ2(x2)− ψ2(x1)ψ1(x2)) .

Hints: For the states

ψ(x1, x2) =
1√
2
(ψ1(x1)ψ2(x2)± ψ2(x1)ψ1(x2)) ,

one can show that

〈x1x2〉 =
L2

4
±

(

16L

9π2

)2

〈

x21
〉

=
〈

x22
〉

=
L2

3
− 5L2

16π2
.

e) Two particles, either both Bosons or both Fermions are placed in the infinite square
well so that one is in the ground state and the other in the first excited state. Describe
how you can use the results of position measurement outcomes to decide whether the
well contains Bosons or Fermions.

5 Multiple particles in an infinite well

Suppose that six identical, indistinguishable particles, each with mass m, are placed in a one
dimensional well with width 2.0× 10−9 m.

a) Suppose that the particles are electrons and that these do not interact with each other.
Determine the lowest possible energy for the collection of particles in the well.

b) Suppose that the particles are neutral kaons (a type of subatomic particle with spin 0)
and mass 8.8 × 10−28 kg. Determine the lowest possible energy for the collection of
particles in the well.

6 Harris, Modern Physics, Second Edition, Ch 8. Prob. 16, page 338.

7 Harris, Modern Physics, Second Edition, Ch 8. Prob. 49, page 342.
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