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Modern Physics: Homework 7
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1 Uncertainties at the everyday level vs. atomic level

It is always possible to construct wave packets for free particles such that ∆x∆p = ~/2.
This exercise considers the implications of this for two objects: an ordinary sized ball and a
proton. In each case the precision with which a particle’s position can be known is described
by ∆x/d where d is the size of the object. The smaller this ratio, the more precisely one can
know the particle’s location. Similarly for the momentum.

First consider a ball of diameter db = 0.02m, mass m = 0.01 kg and with total energy
2×10−9 J. Assume that the ball’s position is known to a fraction of a typical nuclear diameter,
say ∆x = 1 × 10−16 m. Consider the position and momentum of the ball at one instant.
(231S21)

a) Determine the fractional uncertainty in the ball’s position, ∆x/db.

b) Determine the momentum of the ball, p, and the fractional uncertainty in its momentum,
∆p/p.

c) Can you reasonably say that the ball simultaneously has a position and momentum that
are well-defined to within the limits of detectability?

Now suppose that an isolated proton has the same energy and that the uncertainty in its
position is the same as for the ball. Extracting the momentum from the energy for this
requires the following rule from special relativity: pc =

√
E2 −m2c4.

d) Determine the fractional uncertainty in the proton’s position is ∆x/dp where dp =
1× 10−15 m is the typical nuclear diameter.

e) Use a relativistic rule to determine the proton’s momentum and determine the fractional
uncertainty in its momentum ∆p/p.

f) Can you reasonably say that the proton simultaneously has a position and momentum
that are well-defined to within the limits of detectability?

2 Pollen grain

A typical pollen grain from a juniper tree has mass 3.0×10−9 kg and diameter 30µm. Suppose
that you would like to consider such a pollen grain at one particular location at a moment in
time. You would be satisfied to describe its location to an accuracy of 0.01% of its diameter.
(231S21)

a) If you are able to do this what will be the minimum range of speeds that the grain could
have?
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b) Is it feasible to describe such a grain of pollen as being at rest at one particular location?

3 Particle gun

A “particle gun” fires particles. The intention is to
fire particles perfectly horizontally and an example is
illustrated. (231S21)

a) Which of the following is true, assuming that the gun can be constructed perfectly?
Explain your answer.

i) It is possible that every particle can be fired so that they all travel perfectly
horizontally after leaving the gun regardless of the dimensions of the gun.

ii) It is possible that every particle can be fired so that they all travel perfectly
horizontally after leaving the gun but only if the dimensions of the gun are correct.

iii) It is impossible that every particle can be fired so that they all travel perfectly
horizontally after leaving the gun regardless of the dimensions of the gun.

b) Which of the following is true, assuming that the gun can be constructed perfectly?
Explain your answer.

i) It is possible that a single particle can be fired so that it hits a target on the
same vertical level as the middle of the gun opening regardless of the dimensions
of the gun.

ii) It is possible that a single particle can be fired so that it hits a target on the
same vertical level as the middle of the gun opening but only if the dimensions
of the gun are correct.

iii) It is impossible that a single particle can be fired so that it hits a target on the
same vertical level as the middle of the gun opening regardless of the dimensions
of the gun.

4 Uncertainty principle and energy

The energy of an object connected to a spring is

E =
1

2
mv2 +

1

2
kx2

where m is the mass of the object and k is the spring constant. (231S21)

a) Show that

E =
1

2m
p2 +

1

2
kx2

where p is the momentum of the object

b) In classical physics, what is the minimum energy which this system can have?
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c) The expectation value of the energy is

〈E〉 = 1

2m

〈

p2
〉

+
1

2
k
〈

x2
〉

.

Consider the situation where both the expectation values of the position and momentum
are both zero. Show that

〈E〉 = 1

2m
(∆p)2 +

1

2
k(∆x)2.

d) Now assuming the minimum uncertainty situation guaranteed by quantum physics de-
termine the minimum energy that the oscillator can have. How does this compare to
the classical situation?

5 Single slit diffraction and the uncertainty principle

Consider an experiment in which identical
particles, each with mass m and momentum p
in the vertical direction, are fired vertically to-
ward a barrier containing a single slit of width
w as shown in Fig. 1. The possible locations
at which any particle can arrive at a collection
of detectors placed a distance L from the slit
and barrier are denoted x and can be regarded
as referring to positions on a horizontal scale
fixed with respect to the laboratory.
When the slit is centered beneath the point
corresponding to x = 0 on the laboratory scale
the probability distribution for the location at
which the particle arrives, x, is

P (x) = Pmax
sin2(α)

α2

where, to a good approximation,

α =
πpwx

hL

and Pmax is a constant.

Barrier/slit

Particle 1

Particle 2

Particle 3

Detectors

L

0 x

P (x)

Figure 1: Single slit experiment for particle
diffraction.

Recall that the probability that a particle’s location will be between x and x+ dx is P (x)dx,
where P (x) is the probability distribution. First consider the position of particles that do
pass through the slit. (231S21)

a) Suppose that the barrier/slit arrangement can be moved horizontally. If the slit is
centered at x = 0, and a given particle fired toward the barrier does not arrive on
the screen, what can you conclude about its horizontal position at the instant before
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it reached the barrier/slit arrangement? If it did arrive at the screen, what can you
conclude about its position at the instant before it reached the barrier/slit arrangement?

b) With what uncertainty, ∆x, does the slit determine the horizontal position of the par-
ticle at the instant before it reached the barrier/slit arrangement? (Do not invoke
Heisenberg’s uncertainty principle at this stage.)

Now consider the horizontal component of the momentum, px, of particles that pass through
the slit.

c) Suppose that the particle which passes through the slit follows a classical trajectory
from the instant after it passes through the slit until it hits the detectors. Along this
trajectory the horizontal, px, and vertical, py, components of the particle momentum
remain constant. Suppose that the particle arrives at the detector located at x. Deter-
mine an expression for px in terms of x,L and py such that this occurs (to simplify the
analysis, you can assume that the width of the slit is so small that the particle passed
through the point x = 0). Assuming the the vertical component of the momentum of
the particle is unaffected by the slit, rewrite the expression in terms of the momentum,
p prior to arriving at the slit.

d) The range of possible values for px can be inferred from the range of arrival locations at
the detectors. One measure of the range of arrival locations is the range of all possible
locations from x = 0 up to the first minimum in the pattern. Show that the maximum
value of px which results in a particle arriving within this range is px = h/w.

e) Determine the range of horizontal components of momenta ∆px that describe all arrival
locations with the central peak. (Do not invoke Heisenberg’s uncertainty principle at
this stage.) Simplify the expression for ∆px until it only contains h,∆x and numbers.
Find an expression for ∆x∆px. Does this agree with Heisenberg’s uncertainty principle?

6 Free particle wavefunctions

Consider particle with mass m which can move along the x axis but is otherwise free. De-
termine whether each of the following wavefunctions solves the Schrödinger equation for this
particle. (231S21)

a) Ψ(x, t) = A(x+Bt) where A 6= 0 and B 6= 0 are real constants.

b) Ψ(x, t) = Ae−(x−Bt) where A 6= 0 and B 6= 0 are real constants.

c) Ψ(x, t) = Ae−x2/4 e−iEt/~ where A 6= 0 and E 6= 0 are real constants.

d) Ψ(x, t) = A sin (kx) e−iEt/~ where A, k 6= 0 and E 6= 0 are real constants.
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7 Free particle wavefunctions: non-zero potential

Consider particle with mass m which can move along the x axis. Suppose that the wavefunc-
tion that describes the particle is

Ψ(x, t) = Aei(px−Et)/~

Determine whether this free particle wavefunction solves the Schrödinger equation for each
of the following potentials. (231S21)

a) U(x) = 1
2kx

2 where k > 0.

b) U(x) = kx where k 6= 0.
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