Statistical and Thermal Physics: Homework 12

Due: 3 March 2020

1 Gibbs free energy and thermodynamic derivatives
a) Starting with $G=E-T S+P V$, express $\mathrm{d} G$ in terms of $\mathrm{d} T$ and $\mathrm{d} P$ and use the result to express S and V in terms of derivatives of G (remember to indicate variables in the parentheses subscripts).
b) Use the second derivative rule to show that

$$
\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
$$

2 Enthalpy and thermodynamic variables

a) Express $\mathrm{d} H$ in terms of $\mathrm{d} P, \mathrm{~d} S$ and $\mathrm{d} N$ and use the result to express T, V, μ in terms of relevant derivatives of H (remember to indicate variables in the parenthesis subscript).
b) Show that

$$
\left(\frac{\partial T}{\partial P}\right)_{S, N}=\left(\frac{\partial V}{\partial S}\right)_{P, N}
$$

for any system.

3 Enthalpy for an ideal gas

The enthalpy of a system is

$$
H=E+P V
$$

a) Show that

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=T\left(\frac{\partial S}{\partial P}\right)_{T}+V
$$

b) Use the previous result plus one of the Maxwell relations to show that for an ideal gas

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=0
$$

4 Energy of a van der Waals gas

In general

$$
\left(\frac{\partial E}{\partial T}\right)_{V}=c_{V}
$$

and

$$
\left(\frac{\partial E}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

a) Show that

$$
\left(\frac{\partial c_{V}}{\partial V}\right)_{T}=T \frac{\partial^{2} P}{\partial T^{2}}
$$

b) Starting with the equation of state for a van der Waals gas, show that

$$
\left(\frac{\partial E}{\partial V}\right)_{T}=\frac{N^{2}}{V^{2}} a
$$

and also that

$$
\left(\frac{\partial c_{V}}{\partial V}\right)_{T}=0
$$

c) Suppose that c_{V} is independent of temperature for a van der Waals gas. Use the previous results to determine an expression for the energy of the gas $E=E(V, T)$ in terms of c_{V}, N, V and a.

5 Heat capacities for water

Consider water at standard temperature and pressure (298 K and $1.01 \times 10^{5} \mathrm{~Pa}$). The heat capacity at constant pressure per mole is $c_{P}=73 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. The (volume) thermal expansion coefficient is $207 \times 10^{-6} \mathrm{~K}^{-1}$ and the isothermal compressibility is $3.57 \times 10^{-10} \mathrm{~Pa}^{-1}$. Determine the heat capacity at constant volume, c_{V}, per mole under these conditions. Does it differ by much from c_{P} ?

