Statistical and Thermal Physics: Homework 5

Due: 7 February 2020

1 Differentiation of multivariable functions

Consider an ideal gas and suppose that a function of interest satisfies

$$
F=P V^{n}
$$

where n is an integer.
a) Determine $\left(\frac{\partial F}{\partial T}\right)_{V}$ and $\left(\frac{\partial F}{\partial T}\right)_{P}$. Eliminate T to rewrite the results in terms of P and V.
b) Determine values of n for which $\left(\frac{\partial F}{\partial T}\right)_{V}=\left(\frac{\partial F}{\partial T}\right)_{P}$.

2 Differentiation identities

Consider three variables x, y, z that are not independent. This means that they are related by some function, which could be written $z=z(x, y)$ or $y=y(x, z)$ or $x=x(y, z)$ depending on the choice of independent variables. These functions can all be differentiated with respect to their variables; the derivatives must be related. This exercise will result in general relationships between these derivatives that are always satisfied.
a) To illustrated this let $z=x^{2} y$. So $z(x, y)=x^{2} y$. Find expressions for $x=x(y, z)$ and $y=y(x, z)$. Determine expressions for

$$
\left(\frac{\partial z}{\partial y}\right)_{x}, \quad\left(\frac{\partial z}{\partial x}\right)_{y}, \quad\left(\frac{\partial x}{\partial y}\right)_{z}, \quad\left(\frac{\partial x}{\partial z}\right)_{y}, \quad\left(\frac{\partial y}{\partial x}\right)_{z}, \text { and } \quad\left(\frac{\partial y}{\partial z}\right)_{x}
$$

According to your results how are $\left(\frac{\partial z}{\partial y}\right)_{x}$ and $\left(\frac{\partial y}{\partial z}\right)_{x}$ related to each other? How about $\left(\frac{\partial z}{\partial x}\right)_{y}$ and $\left(\frac{\partial x}{\partial z}\right)_{y}$?
b) To prove these relationships for any function, first consider x and y as the independent variables. Express $\mathrm{d} z$ in terms of $\mathrm{d} x$ and $\mathrm{d} y$, using appropriate partial derivatives. Note that this must be done for any function $z(x, y)$, not just the special case above. Then express $\mathrm{d} x$ in terms of $\mathrm{d} y$ and $\mathrm{d} z$, using appropriate partial derivatives. Substitute this into the general expression for $\mathrm{d} z$; this will give an expression for $\mathrm{d} z$ in terms of $\mathrm{d} x$ and $\mathrm{d} z$. Use the expression to show that

$$
\begin{align*}
& \left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial z}\right)_{y}=1 \quad \text { and } \tag{1}\\
& \left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{z}=-\left(\frac{\partial z}{\partial y}\right)_{x} \tag{2}
\end{align*}
$$

These identities will be important throughout the subject.
c) Check that the identities are valid for the function $z(x, y)=x^{2} y$.
d) There is nothing special about the order of the variables in Eqs. (1) and (2). You could permute the variables as $x \rightarrow y, y \rightarrow z$ and $z \rightarrow x$ and the identities must still be valid. Do this and check the resulting identities for $z=x^{2} y$.
e) Check these identities for an ideal gas, with $z \rightarrow P, x \rightarrow T$ and $y \rightarrow V$.

3 Heat capacities for an ideal gas

Consider monoatomic gases. For an ideal gas,

$$
E=\frac{3}{2} N k T .
$$

a) Using the energy, E, determine c_{V} and c_{P} for this gas.
b) Explain, in terms of the energy involved in the processes to measure the two heat capacities, why you would expect $c_{P}>c_{V}$.

