Statistical and Thermal Physics: Homework 3

Due: 31 January 2020

1 Thermal expansion

The linear thermal expansion coefficient describes the increase in length of a homogenous material as its temperature changes and is defined by

$$
\alpha_{1}:=\frac{1}{L} \frac{\partial L}{\partial T}
$$

where L is the length of the material. The subscript in α_{1} is not standard notation; it is included to distinguish the linear thermal expansion coefficient from the volume thermal expansion coefficient.
a) For copper, $\alpha_{1}=1.65 \times 10^{-5} \mathrm{~K}^{-1}$. Determine the amount by which a copper rod of length 10 m will expand if it is heated from $-10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, assuming that α is independent of temperature.
b) A rectangular sheet of any material will expand as its temperature increases. Here the coefficient of area expansion is defined by

$$
\gamma:=\frac{1}{A} \frac{\partial A}{\partial T}
$$

where A is the area of the material. Show that

$$
\gamma=2 \alpha_{1}
$$

Determine the amount by which the area of a rectangular copper roof, whose sides are 10 m and 4 m increases if it is heated from $-10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.

2 Thermal expansion coefficient for a van der Waals gas

Determine an expression for the thermal expansion coefficient for a van der Waals gas. Hint: note that differentiation of V w.r.t. T will be difficult. There is an identity that we encountered in class that will make this easier.

3 Isothermal compressibility of an ideal gas

Determine an expression for the isothermal compressibility of an ideal gas, in terms of N, P and T. Show that it is positive.

4 Equation of state for a solid

The state of a solid material can be described by the same variables as for a gas. Suppose that the equation of state of the solid is

$$
V=V_{0}(1+a T-b P)
$$

where V_{0} is a constant equal to the volume when pressure and temperature are zero and a and b are constants that are very small.
a) Determine expressions for the isothermal compressibility and the isobaric expansion coefficient.
b) Suppose that a and b are so small that at typical temperatures $a T \ll 1$ and $b P \ll 1$. Determine approximate expressions for the isothermal compressibility and the isobaric thermal expansion coefficient in this case. Are they approximately constant or not?

