Statistical and Thermal Physics: Homework 3
Due: 31 January 2020

1 Thermal expansion
The linear thermal expansion coefficient describes the increase in length of a homogenous material as its temperature changes and is defined by

$$\alpha_1 := \frac{1}{L} \frac{\partial L}{\partial T}$$

where L is the length of the material. The subscript in α_1 is not standard notation; it is included to distinguish the linear thermal expansion coefficient from the volume thermal expansion coefficient.

a) For copper, $\alpha_1 = 1.65 \times 10^{-5} \text{ K}^{-1}$. Determine the amount by which a copper rod of length 10 m will expand if it is heated from -10°C to 30°C, assuming that α is independent of temperature.

b) A rectangular sheet of any material will expand as its temperature increases. Here the coefficient of area expansion is defined by

$$\gamma := \frac{1}{A} \frac{\partial A}{\partial T}$$

where A is the area of the material. Show that

$$\gamma = 2\alpha_1.$$

Determine the amount by which the area of a rectangular copper roof, whose sides are 10 m and 4 m increases if it is heated from -10°C to 30°C.

2 Thermal expansion coefficient for a van der Waals gas
Determine an expression for the thermal expansion coefficient for a van der Waals gas. Hint: note that differentiation of V w.r.t. T will be difficult. There is an identity that we encountered in class that will make this easier.

3 Isothermal compressibility of an ideal gas
Determine an expression for the isothermal compressibility of an ideal gas, in terms of N, P and T. Show that it is positive.
4 Equation of state for a solid

The state of a solid material can be described by the same variables as for a gas. Suppose that the equation of state of the solid is

\[V = V_0(1 + aT - bP) \]

where \(V_0 \) is a constant equal to the volume when pressure and temperature are zero and \(a \) and \(b \) are constants that are very small.

a) Determine expressions for the isothermal compressibility and the isobaric expansion coefficient.

b) Suppose that \(a \) and \(b \) are so small that at typical temperatures \(aT \ll 1 \) and \(bP \ll 1 \). Determine approximate expressions for the isothermal compressibility and the isobaric thermal expansion coefficient in this case. Are they approximately constant or not?