Statistical and Thermal Physics: Class Exam II 23 April 2019

Instructions

• There are 6 questions on 10 pages.

Show your reasoning and calculations and always explain your answers.

Physical constants and useful formulae

$$R = 8.31 \, \mathrm{J/mol \ K}$$
 $N_A = 6.02 \times 10^{23} \, \mathrm{mol}^{-1}$ $1 \, \mathrm{atm} = 1.01 \times 10^5 \, \mathrm{Pa}$ $k = 1.38 \times 10^{-23} \, \mathrm{J/K} = 8.61 \times 10^{-5} \, \mathrm{eV/K}$ $e = 1.60 \times 10^{-19} \, \mathrm{C}$ $N! \approx N^N e^{-N} \sqrt{2\pi N}$ $\ln N! \approx N \ln N - N$ $e^x \approx 1 + x$ if $x \ll 1$

Question 1

An isolated Einstein solid consists of four oscillators, labeled A, B, C and D. Any microstate of the solid can be described by listing the *energy level* n for each. These are denoted n_A, n_B, n_C, \ldots Consider the following microstates:

State	n_A	n_B	n_C	n_D
microstate 1	1	1	1	1
microstate 2	4	0	0	0
microstate 3	0	2	0	2

a) Provide a value for q for each microstate.

b) Rank the microstates in order of increasing probability, indicating equality whenever \mathcal{V} this occurs.

A system consists of four non-interacting identical spin-1/2 particles. The bulk observables for the system are the total energy of the ensemble and the particle number. For any *individual* particle the following are the possible states (where $\epsilon > 0$):

State	Energy	Probability	
spin up	$-\epsilon$	$\frac{7}{10}$ —	0 P+
spin down	ϵ	$\frac{3}{10}$ —	D P-

a) List all possible macrostates and the probabilities with which each occurs.

Use number of particles in spin up N+. Then number in spin down is 4-N+. Energy is
$$-E N++E N-=E (4-2N+)$$

N+ Energy Prob = $\binom{N}{N+}$ P+ P-N-

O $AE = \binom{4}{0} \binom{7}{10} \binom{3}{10}^3 = \binom{3}{10000}$

1 $26 = \binom{4}{1} \binom{7}{10} \binom{3}{10}^3 = \binom{756}{10000}$

2 $O = \binom{4}{2} \binom{7}{10}^2 \binom{3}{10}^2 = \binom{2646}{10000}$

3 $-26 = \binom{4}{3} \binom{7}{10}^3 \binom{3}{10}^1 = \binom{4116}{10000}$

4 $\binom{4}{4} \binom{7}{10}^3 \binom{3}{10}^0 = \binom{2401}{10000}$

b) Determine the energy of the equilibrium state of this system.

Equil = most probable =
$$V = 3$$
 42

every $V = 3$
 $V =$

Answer either part a) or part b) for full credit for this problem.

a) Two Einstein solids, A and B, interact with each other but are otherwise isolated. In the high temperature limit the multiplicity of A is $\Omega_A = \kappa_A q_A^{N_A}$ where N_A is the number of particles in solid A, q_A is the number of energy units in solid A and κ_A is a term that is independent of q_A . Similarly for B, $\Omega_B = \kappa_B q_B^{N_B}$. Determine an expression for the entropy of the combined system (in terms of N_A , N_B , q_A , q_B , κ_A and κ_B). Describe how you could use this to determine the ratio in which the energy is shared between the two solids in the equilibrium state.

$$S = k \ln[\Omega]$$

$$= k \ln[\Omega_A \Omega_B] = k \ln \Omega_A + k \ln \Omega_B$$

$$= k \ln[K_A q_A^{NA}] + k \ln[K_B q_B^{Ng}]$$

$$S = k \{\ln K_A + \ln K_B + N_A \ln q_A + N_B \ln q_B\}$$

$$Determine maximum value for S. Note that if every is fixed then $q = q_A + q_B$ is constant. So $q_B = q - q_A$ gives
$$S = k \{\ln K_A + \ln K_B + N_A \ln q_A + N_B \ln(q_A q_A)\}$$

$$D : ffeentiate w.rt. q_A and set equal to zero$$

$$= D \frac{N_A}{q_A} - \frac{N_C}{q_A q_A} = 0 = D \frac{q_A}{N_A} = \frac{q_B}{N_B}$$

$$= D \frac{q_A}{q_B} = \frac{N_A}{N_B} = \frac{q_B}{N_B} = \frac{N_B}{N_B} = \frac{q_B}{N_B} = \frac{q_B}{N_B} = \frac{N_B}{N_B} = \frac{q_B}{N_B} = \frac{N_B}{N_B} = \frac{q_B}{N_B} = \frac{N_B}{N_B} = \frac{q_B}{N_B} = \frac{N_B}{N_B} = \frac{q_B}{N_B} = \frac{q_B}{N_B} = \frac{N_B}{N_B} = \frac{q_B}{N_B} = \frac{N_B}{N_B} = \frac{q_B}{N_B} = \frac{N_B}{N_B} = \frac{q_B}{N_B} =$$$$

b) Consider a single two dimensional quantum oscillator for which the states are labeled by integers n_x and n_y ; these can independently take on the values $0, 1, 2, \ldots$. The energy for this is

$$E = \hbar\omega \, \left(n_x + n_y + 1 \right).$$

List the three macrostates with lowest energy and all the microstates for each. Describe how you would find the entropy, S, for an ensemble of N such identical, distinguishable, non-interacting, oscillators as a function of energy, E.

	\cap_{\times}	74	E
macroslatel	0	0	ħw
	0	dyggderighten stimuer vi Vr. /	Ztrw
mactoslale? {	1	0	zhw
ſ)	3 400
maccatate 3	0	2	3 h w
(2	0	3 to W

Count all states with energy
$$E \rightarrow D$$
 multiplicity $\Omega(E,N)$

$$\sim D \qquad S = k \ln[\Omega(E,N)]$$

Consider an Einstein solid, with N oscillators, for which $q\gg N\gg 1$ (this is the high temperature limit). Then the multiplicity of any macrostate is

$$\Omega \approx \left(\frac{eq}{N}\right)^N \frac{1}{\sqrt{2\pi N}}$$

and the energy of this state is $E=\hbar\omega\left(q+N/2\right)$.

a) Determine an expression for the entropy of the system.

$$S = k \ln \Omega$$

$$= k \ln \left\{ \left(\frac{eq}{N} \right)^{N} \right\}^{\frac{1}{\sqrt{2\pi}N}}$$

$$= k \left\{ \ln \left[\left(\frac{eq}{N} \right)^{N} \right] + \ln \left[\frac{1}{\sqrt{2\pi}N} \right] \right\}$$

$$= k \left\{ N \ln \left(\frac{eq}{N} \right) - \frac{1}{2} \ln \left(2\pi N \right) \right\}$$

$$= k \left\{ N \left(\ln \frac{eq}{N} - \ln N \right) - \frac{1}{2} \ln \left(2\pi N \right) - \frac{1}{2} \ln N \right\}$$

$$= k \left\{ N \ln q - N \ln N + N - \frac{1}{2} \ln N - \frac{1}{2} \ln \left(2\pi N \right) \right\}$$

$$= k \left\{ N \ln q - N \ln N + N - \frac{1}{2} \ln N - \frac{1}{2} \ln \left(2\pi N \right) \right\}$$

$$= k \left\{ N \ln q - N \ln N + N - \frac{1}{2} \ln N - \frac{1}{2} \ln \left(2\pi N \right) \right\}$$

$$= k \left\{ N \ln q - N \ln N + N - \frac{1}{2} \ln N - \frac{1}{2} \ln \left(2\pi N \right) \right\}$$

$$= k \left\{ N \ln q - N \ln N + N - \frac{1}{2} \ln N - \frac{1}{2} \ln \left(2\pi N \right) \right\}$$

Question 4 continued ...

b) Determine an expression for the energy of the solid, E, in terms of temperature and particle number.

$$\frac{1}{T} = \frac{\partial s}{\partial E}$$

$$= \frac{\partial S}{\partial q} \frac{\partial q}{\partial E}$$

$$\frac{\partial q}{\partial E} = \frac{1}{2} = \frac{1}{4} \omega$$

$$= 0 \qquad Q = \frac{NkT}{\hbar\omega}$$

An ensemble of N identical, distinguishable, non-interacting spin-1/2 particles are all in a magnetic field with magnitude B. The energy of a single particle in the spin-up state is $-\mu B$ and that of a single particle in the spin down state is $+\mu B$. These are in contact with a bath at temperature T.

a) Determine an expression for the partition function for the entire system.

$$Z = \sum e^{-Es\beta}$$
 $Z = (Zsingle)^N$ Single

So
$$Z = \left[e^{B\mu\beta} + e^{-B\mu\beta} \right]^N$$

b) Determine an expression for the mean value of the energy of the system.

$$\begin{aligned}
& = -\frac{\partial}{\partial \beta} \ln Z \\
& = -\frac{\partial}{\partial \beta} \ln \left[-\frac{1}{2} \right]^{N} \\
& = -\frac{\partial}{\partial \beta} \ln \left[e^{B\mu\beta} + e^{-B\mu\beta} \right] \\
& = -N \frac{B\mu \left[e^{B\mu\beta} - e^{-B\mu\beta} \right]}{e^{B\mu\beta} + e^{-B\mu\beta}} \\
& = -NB\mu \frac{Sinh B\mu\beta}{cosh B\mu\beta}
\end{aligned}$$

Answer either part a) or part b) for full credit for this problem.

a) Consider an ensemble of identical, non-interacting particles at temperature T. Each can be in one of four distinct states; the energies of these states are $0, \epsilon, \epsilon, \epsilon$ where $\epsilon = kT/4$. Determine the probability with which any single particle will be in the lowest energy state.

$$prob = e^{-Es\beta}$$

$$=\frac{e^{-OB}}{Z}=\frac{1}{Z}$$

$$= 1 + 3e^{-68}$$

$$=1 + 3 e^{-kT_{4kT}} = 1 + 3 e^{-0.25} = 3.336$$

$$prob = \frac{1}{3.336} = 0.30$$

b) Using the canonical ensemble, show that the heat capacity for a system is

$$c = \frac{1}{kT^2} \, \frac{\partial^2 \ln Z}{\partial \beta^2}$$

and use this to show that for a system consisting of N identical, distinguishable, non-interacting particles that the heat capacity is proportional to N.

$$C = \frac{\partial \overline{E}}{\partial \tau} = \frac{\partial \overline{E}}{\partial \beta} \frac{\partial \beta}{\partial \tau}$$

$$\beta = \frac{1}{k\tau}$$

$$\frac{\partial \beta}{\partial \tau} = -\frac{1}{k\tau^2}$$

$$= -\frac{1}{k\tau^2} \frac{\partial}{\partial \beta} \overline{E}$$

But
$$\overline{E} = -\frac{\lambda}{\lambda \beta} \ln \overline{t}$$
 = D $C = \frac{1}{kT^2} \frac{\partial^2}{\partial \beta^2} \ln \overline{t}$

Here
$$Z = (Z \operatorname{single})^N \Rightarrow C = \frac{1}{kT} \frac{\partial^2}{\partial \beta^2} \ln (Z \operatorname{single})^N$$

$$= N \left(kT \frac{\partial^2}{\partial \beta} \ln (Z \operatorname{single}) \right)^N$$
independent of N