Statistical and Thermal Physics: Class Exam II

23 April 2019

Name: \qquad Total:
/50

Instructions

- There are 6 questions on 10 pages.
- Show your reasoning and calculations and always explain your answers.

Physical constants and useful formulae

$$
\begin{aligned}
& R=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \quad N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \quad 1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa} \\
& k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}=8.61 \times 10^{-5} \mathrm{eV} / \mathrm{K} \quad e=1.60 \times 10^{-19} \mathrm{C} \\
& N!\approx N^{N} e^{-N} \sqrt{2 \pi N} \quad \ln N!\approx N \ln N-N \quad e^{x} \approx 1+x \quad \text { if } x \ll 1
\end{aligned}
$$

Question 1

An isolated Einstein solid consists of four oscillators, labeled A, B, C and D. Any microstate of the solid can be described by listing the energy level n for each. These are denoted $n_{A}, n_{B}, n_{C}, \ldots$ Consider the following microstates:

State	n_{A}	n_{B}	n_{C}	n_{D}
microstate 1	1	1	1	1
microstate 2	4	0	0	0
microstate 3	0	2	0	2

a) Provide a value for q for each microstate.
b) Rank the microstates in order of increasing probability, indicating equality whenever this occurs.

Question 2

A system consists of four non-interacting identical spin- $1 / 2$ particles. The bulk observables for the system are the total energy of the ensemble and the particle number. For any individual particle the following are the possible states (where $\epsilon>0$):

State	Energy	Probability
spin up	$-\epsilon$	$\frac{7}{10}$
spin down	ϵ	$\frac{3}{10}$

a) List all possible macrostates and the probabilities with which each occurs.
b) Determine the energy of the equilibrium state of this system.

Question 3

Answer either part a) or part b) for full credit for this problem.

a) Two Einstein solids, A and B, interact with each other but are otherwise isolated. In the high temperature limit the multiplicity of A is $\Omega_{A}=\kappa_{A} q_{A}^{N_{A}}$ where N_{A} is the number of particles in solid A, q_{A} is the number of energy units in solid A and κ_{A} is a term that is independent of q_{A}. Similarly for $\mathrm{B}, \Omega_{B}=\kappa_{B} q_{B}^{N_{B}}$. Determine an expression for the entropy of the combined system (in terms of $N_{A}, N_{B}, q_{A}, q_{B}, \kappa_{A}$ and κ_{B}). Describe how you could use this to determine the ratio in which the energy is shared between the two solids in the equilibrium state.
b) Consider a single two dimensional quantum oscillator for which the states are labeled by integers n_{x} and n_{y}; these can independently take on the values $0,1,2, \ldots$. The energy for this is

$$
E=\hbar \omega\left(n_{x}+n_{y}+1\right) .
$$

List the three macrostates with lowest energy and all the microstates for each. Describe how you would find the entropy, S, for an ensemble of N such identical, distinguishable, non-interacting, oscillators as a function of energy, E.

Question 4

Consider an Einstein solid, with N oscillators, for which $q \gg N \gg 1$ (this is the high temperature limit). Then the multiplicity of any macrostate is

$$
\Omega \approx\left(\frac{e q}{N}\right)^{N} \frac{1}{\sqrt{2 \pi N}}
$$

and the energy of this state is $E=\hbar \omega(q+N / 2)$.
a) Determine an expression for the entropy of the system.
b) Determine an expression for the energy of the solid, E, in terms of temperature and particle number.

Question 5

An ensemble of N identical, distinguishable, non-interacting spin- $1 / 2$ particles are all in a magnetic field with magnitude B. The energy of a single particle in the spin-up state is $-\mu B$ and that of a single particle in the spin down state is $+\mu B$. These are in contact with a bath at temperature T.
a) Determine an expression for the partition function for the entire system.
b) Determine an expression for the mean value of the energy of the system.

Question 6

Answer either part a) or part b) for full credit for this problem.

a) Consider an ensemble of identical, non-interacting particles at temperature T. Each can be in one of four distinct states; the energies of these states are $0, \epsilon, \epsilon, \epsilon$ where $\epsilon=k T / 4$. Determine the probability with which any single particle will be in the lowest energy state.
b) Using the canonical ensemble, show that the heat capacity for a system is

$$
c=\frac{1}{k T^{2}} \frac{\partial^{2} \ln Z}{\partial \beta^{2}}
$$

and use this to show that for a system consisting of N identical, distinguishable, noninteracting particles that the heat capacity is proportional to N.

