Electromagnetic Theory: Class Exam I

4 October 2019

Name: \qquad

Total:

Instructions

- There are 4 questions on 6 pages.
- Show your reasoning and calculations and always explain your answers.

Physical constants and useful formulae

$$
\begin{aligned}
\text { Permittivity of free space } & \epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} \\
\text { Charge of an electron } & e=-1.60 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

Integrals

$$
\begin{aligned}
\int \sin (a x) \sin (b x) \mathrm{d} x & =\frac{\sin ((a-b) x)}{2(a-b)}-\frac{\sin ((a+b) x)}{2(a+b)} \quad \text { if } a \neq b \\
\int \cos (a x) \cos (b x) \mathrm{d} x & =\frac{\sin ((a-b) x)}{2(a-b)}+\frac{\sin ((a+b) x)}{2(a+b)} \quad \text { if } a \neq b \\
\int \sin (a x) \cos (a x) \mathrm{d} x & =\frac{1}{2 a} \sin ^{2}(a x) \\
\int \sin ^{2}(a x) \mathrm{d} x & =\frac{x}{2}-\frac{\sin (2 a x)}{4 a} \\
\int \cos ^{2}(a x) \mathrm{d} x & =\frac{x}{2}+\frac{\sin (2 a x)}{4 a} \\
\int x \sin ^{2}(a x) \mathrm{d} x & =\frac{x^{2}}{4}-\frac{x \sin (2 a x)}{4 a}-\frac{\cos (2 a x)}{8 a^{2}} \\
\int x^{2} \sin ^{2}(a x) \mathrm{d} x & =\frac{x^{3}}{6}-\frac{x^{2}}{4 a} \sin (2 a x)-\frac{x}{4 a^{2}} \cos (2 a x)+\frac{1}{8 a^{3}} \sin (2 a x)
\end{aligned}
$$

Question 1

A sphere with radius R contains total charge that is distributed according to the charge density

$$
\rho=\alpha r
$$

where r is the distance from the center of the sphere and α is a constant.
a) Suppose that the total charge contained within the entire sphere is Q. Determine an expression for Q in terms of α and R.
b) Determine expressions for the electric field at all points inside and outside the sphere. The expressions for the electric field must be written in terms of Q.

Question 2

Someone proposes the following as an electric field (given in cylindrical coordinates) produced by an arrangement of stationary charges:

$$
\mathbf{E}=E \hat{\phi}
$$

where E is a constant.
a) Sketch the electric field in the $x y$ plane.
b) Describe whether this electric field could arise from a collection of stationary charges or not. Explain your answer.

Question 3

A particular electrostatic charge distribution gives an electric field, described in cylindrical coordinates, of

$$
\mathbf{E}=\frac{k}{s^{2}} \hat{\mathbf{s}}
$$

where k is a constant. Determine the electrostatic potential at any point, taking the potential at infinity as zero.

Question 4

Two infinitely long cylinders each have the same radius, R and carry charge whose distribution only depends on the radial distance from the cylinder axis. The total charge per unit length of each cylinder is identical. However, in cylinder A it is uniformly distributed and in cylinder B , the charge density increases with distance from the center of the cylinder. Consider the electric fields at points each a distance $2 R$ from the cylinder axis in each case. Is the field at point Q the same as, larger than or smaller than the field at point P? Explain your answer.

Q

