Question 1

Many neutrons are fired toward a barrier/slit arrangement and arrive at a screen. The probability distribution for arrival at various locations depends on the barrier/slit arrangement. A double slit produces the solid dark blue probability distribution. A single slit produces the dashed dark red distribution.

Which of the following is true?

1. Single slit \Rightarrow more arrive at A than B. Double slit \Rightarrow more arrive at A than B.
2. Single slit \Rightarrow more arrive at B than A. Double slit \Rightarrow more arrive at A than B.
3. Single slit \Rightarrow more arrive at B than A. Double slit \Rightarrow more arrive at B than A.
4. Single slit \Rightarrow more arrive at A than B. Double slit \Rightarrow more arrive at B than A.

Question 2

In general the energy levels for a particle in a box are described by $n=1,2,3, \ldots$ with energies

$$
E_{n}=\frac{h^{2}}{8 m L^{2}} n^{2}
$$

For a particular particle in a box the mass and box length are such that the energies are

$$
E_{n}=1.00 \mathrm{eV} n^{2}
$$

The particle undergoes a jump from a higher to lower state.

Let λ_{4} be the wavelength of the light emitted in a jump from $n=4 \rightarrow n=3$ and λ_{2} be the wavelength of the light emitted in a jump from $n=2 \rightarrow n=1$. Which of the following is true?

1. $\lambda_{4}=\lambda_{2}$.
2. $\lambda_{4}>\lambda_{2}$.
3. $\lambda_{4}<\lambda_{2}$.

Question 3

Consider a hydrogen atom. In a particular situation, the electron is known to be in a state where $l=2$.

Which of the following are possible values for n ?

1. Only $n=1$.
2. Only $n=2$.
3. Only $n=3$.
4. Any of $n=1,2$.
5. Any of $n=2,3,4, \ldots$
6. Any of $n=3,4,5, \ldots$.
