Question 1

Many neutrons are fired toward a barrier/slit arrangement and arrive at a screen. The probability distribution for arrival at various locations depends on the barrier/slit arrangement. A double slit produces the solid dark blue probability distribution. A single slit produces the dashed dark red distribution.

Which of the following is true?

- 1. Single slit \Rightarrow more arrive at A than B. Double slit \Rightarrow more arrive at A than B.
- 2. Single slit \Rightarrow more arrive at B than A. Double slit \Rightarrow more arrive at A than B.
- 3. Single slit \Rightarrow more arrive at B than A. Double slit \Rightarrow more arrive at B than A.
- 4. Single slit \Rightarrow more arrive at A than B. Double slit \Rightarrow more arrive at B than A.

Question 2

In general the energy levels for a particle in a box are described by $n=1,2,3,\ldots$ with energies

$$E_n = \frac{h^2}{8mL^2} \, n^2.$$

For a particular particle in a box the mass and box length are such that the energies are

$$E_n = 1.00 \, \text{eV} \, n^2$$
.

The particle undergoes a jump from a higher to lower state.

Let λ_4 be the wavelength of the light emitted in a jump from $n=4 \to n=3$ and λ_2 be the wavelength of the light emitted in a jump from $n=2 \to n=1$. Which of the following is true?

- 1. $\lambda_4 = \lambda_2$.
- 2. $\lambda_4 > \lambda_2$.
- 3. $\lambda_4 < \lambda_2$

Question 3

Consider a hydrogen atom. In a particular situation, the electron is known to be in a state where $l=2. \ \ \,$

Which of the following are possible values for n?

- 1. Only n = 1.
- 2. Only n = 2.
- 3. Only n = 3.
- 4. Any of n = 1, 2.
- 5. Any of $n = 2, 3, 4, \dots$
- 6. Any of n = 3, 4, 5, ...