Electromagnetic Theory: Homework 7

Due: 13 September 2019

1 Divergence and curl in spherical coordinates

Let

$$
\mathbf{v}=2 \hat{\mathbf{r}}+2 \hat{\boldsymbol{\theta}}
$$

in spherical coordinates.
a) Determine the divergence of \mathbf{v}.
b) Determine the curl of \mathbf{v}.
c) Is the sketch of \mathbf{v} in the $y z$-plane consistent with your results?

2 Stoke's theorem in spherical coordinates

Let

$$
\mathbf{v}:=2 a r \hat{\boldsymbol{\theta}}+r^{2} \hat{\boldsymbol{\phi}}
$$

where $a>0$ is a constant.
a) Determine $\oint \mathbf{v} \cdot \mathrm{d} \mathbf{l}$ along the illustrated curve.
b) Verify Stoke's theorem for this example.

3 Divergence theorem in spherical coordinates

Let

$$
\mathbf{v}:=r \cos \theta \hat{\mathbf{r}}-r \sin \theta \hat{\boldsymbol{\theta}}+r \cos \phi \hat{\boldsymbol{\phi}}
$$

where $a>0$ is a constant. Consider the conical section of a sphere of radius a as illustrated. The angle from the z axis to the conical section is $\pi / 6$ and the top of the conical section is a portion of a sphere of radius a.
a) Determine $\oint \mathbf{v} \cdot \mathrm{d} \mathbf{a}$ across the surface.

b) Verify the divergence theorem for this example.

