Electromagnetic Theory: Homework 3

Due: 30 August 2019

1 Divergence and curl of a vector field with three components

Let

$$
\mathbf{v}=z x \hat{\mathbf{x}}+x y \hat{\mathbf{y}}+z y \hat{\mathbf{z}}
$$

Determine the divergence and curl of \mathbf{v}.

2 Radial vector field

Let

$$
\mathbf{v}=\frac{\hat{\mathbf{r}}}{r^{n}}
$$

where $\mathbf{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$ and n is an integer.
a) Sketch this vector field. Use the sketch describe whether you expect $\boldsymbol{\nabla} \cdot \mathbf{v}$ to be positive, negative or zero. Use the sketch to describe whether you expect $\boldsymbol{\nabla} \times \mathbf{v}$ to be zero or not.
b) Determine $\boldsymbol{\nabla} \cdot \mathbf{v}$. For which values of n is this positive, negative or zero? Do the results result agree your predictions? Hint: first rewrite \mathbf{v} in terms of \mathbf{r}.
c) Determine $\boldsymbol{\nabla} \times \mathbf{v}$. Does the result agree with your prediction?

3 Differentiating products

Consider

$$
\begin{aligned}
& \mathbf{A}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}} \quad \text { and } \\
& \mathbf{B}=y \hat{\mathbf{x}}-x \hat{\mathbf{y}} .
\end{aligned}
$$

Show, by direct substitution into either side that

$$
\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B})=\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})+(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A} .
$$

for these vector fields.

4 Gradient and vector fields

Consider the vector fields

$$
\begin{aligned}
& \mathbf{A}=x \hat{\mathbf{y}} \\
& \mathbf{B}=y \hat{\mathbf{y}}
\end{aligned}
$$

a) Based on sketches of these vectors fields would you say that either is the gradient of a function? That is, is there some function f so that $\mathbf{A}=\nabla(f)$ and similarly for \mathbf{A}. Explain your answer.
b) How could you check precisely if either vector is the gradient of some function?

