Electromagnetic Theory: Class Exam I 4 October 2019

Name: Solution Total: /40

Instructions

• There are 4 questions on 6 pages.

Permittivity of free space

Show your reasoning and calculations and always explain your answers.

Physical constants and useful formulae

 $\epsilon_0 = 8.85 \times 10^{-12} \, \mathrm{C}^2 / \mathrm{Nm}^2$

Charge of an electron
$$e = -1.60 \times 10^{-19} \,\mathrm{C}$$

Integrals
$$\int \sin(ax) \sin(bx) \,\mathrm{d}x = \frac{\sin((a-b)x)}{2(a-b)} - \frac{\sin((a+b)x)}{2(a+b)} \quad \text{if } a \neq b$$

$$\int \cos(ax) \cos(bx) \,\mathrm{d}x = \frac{\sin((a-b)x)}{2(a-b)} + \frac{\sin((a+b)x)}{2(a+b)} \quad \text{if } a \neq b$$

$$\int \sin(ax) \cos(ax) \,\mathrm{d}x = \frac{1}{2a} \sin^2(ax)$$

$$\int \sin^2(ax) \,\mathrm{d}x = \frac{x}{2} - \frac{\sin(2ax)}{4a}$$

$$\int \cos^2(ax) \,\mathrm{d}x = \frac{x}{2} + \frac{\sin(2ax)}{4a}$$

$$\int x \sin^2(ax) \,\mathrm{d}x = \frac{x^2}{4} - \frac{x \sin(2ax)}{4a} - \frac{\cos(2ax)}{8a^2}$$

 $\int x^2 \sin^2(ax) \, dx = \frac{x^3}{6} - \frac{x^2}{4a} \sin(2ax) - \frac{x}{4a^2} \cos(2ax) + \frac{1}{8a^3} \sin(2ax)$

A sphere with radius R contains total charge that is distributed according to the charge density

$$\rho = \alpha r$$

where r is the distance from the center of the sphere and α is a constant.

4 a) Suppose that the total charge contained within the entire sphere is Q. Determine an expression for Q in terms of α and R.

G=
$$\int p(\dot{r})dz'$$
 = $\int ds' \int d\phi' \int d\phi' r'^2 sin\theta' p(\dot{r}')$
= $\alpha \int dr' r'^3 \int d\phi' \int d\phi' sin\theta'$

$$Q = 4 \frac{11}{4} \times R^4$$

b) Determine expressions for the electric field at all points inside and outside the sphere. The expressions for the electric field must be written in terms of Q.

By rotating about
$$x,y,z$$
 axes we can see that $\vec{E} = E_r(r) \hat{r}$

$$C = C' = C'$$
 $C = C' = C'$

Question 1 continued ...

 $C = C' = C'$

Question 1 continued ...

So
$$\oint \vec{E} \cdot d\vec{a} = \int d\vec{e} \int d\vec{e}' \, E_{\Gamma}(\vec{e}) \, r^2 \sin \theta'$$

$$= E_{\Gamma}(\vec{e}) \, r^2 \int_{0}^{\pi} d\vec{e}' \sin \theta' \int_{0}^{2\pi} d\vec{e}' \, d$$

Someone proposes the following as an electric field (given in cylindrical coordinates) produced by an arrangement of stationary charges:

$$\mathbf{E} = E\hat{oldsymbol{\phi}}$$

where E is a constant.

a) Sketch the electric field in the xy plane.

b) Describe whether this electric field could arise from a collection of stationary charges or not. Explain your answer.

We need $\vec{\nabla} \times \vec{E} = 0$. Here $\vec{E}_5 = 0$ $\vec{E}_t = 0$ $\vec{E}_{\vec{k}} = \vec{E}_{\vec{k}}$

In cylindrical co-ords:
$$\nabla \times \vec{E} = \begin{bmatrix} \frac{1}{S} \frac{\partial E}{\partial s} - \frac{\partial F}{\partial t} \end{bmatrix} \hat{S} + \begin{bmatrix} \frac{\partial E}{\partial s} - \frac{\partial E}{\partial s} \end{bmatrix} \hat{O} + \frac{1}{S} \begin{bmatrix} \frac{\partial}{\partial s} (SE_0) - \frac{\partial F}{\partial s} \end{bmatrix} \hat{Z}$$

$$= \frac{1}{S} \frac{\partial}{\partial s} SE \hat{Z} = \frac{E}{S} \hat{Z} \neq 0$$

It does not asse from stationary charges

A particular electrostatic charge distribution gives an electric field, described in cylindrical coordinates, of

$$\mathbf{E} = \frac{k}{s^2}\mathbf{\hat{s}}$$

where k is a constant. Determine the electrostatic potential at any point, taking the potential at infinity as zero.

Two infinitely long cylinders each have the same radius, R and carry charge whose distribution only depends on the radial distance from the cylinder axis. The total charge per unit length of each cylinder is identical. However, in cylinder A it is uniformly distributed and in cylinder B, the charge density increases with distance from the center of the cylinder. Consider the electric fields at points each a distance 2R from the cylinder axis in each case. Is the field at point Q the same as, larger than or smaller than the field at point P? Explain your answer.

$$\oint \vec{E} \cdot d\vec{a} = \frac{q_{exc}}{60}$$

Case A

Case B

P