Modern Optics: Homework 17

Due: 21 October 2015

1 Superposition of two waves of different amplitudes

Consider three waves, all produced at the same source with the same phase and polarization.

$$
\begin{aligned}
& \tilde{\mathbf{E}}_{1}=E_{1} e^{i\left(k_{1} x-\omega_{1} t\right)} \hat{\mathbf{y}} \\
& \tilde{\mathbf{E}}_{2}=E_{2} e^{i\left(k_{2} x-\omega_{2} t\right)} \hat{\mathbf{y}}
\end{aligned}
$$

a) Defining $\delta_{j}:=k_{j} x-\omega_{j} t$, show that the superposition is

$$
\tilde{\mathbf{E}}=e^{i\left(\delta_{1}+\delta_{2}\right) / 2} Z \hat{\mathbf{y}}
$$

where

$$
Z:=E_{1} e^{i\left(\delta_{1}-\delta_{2}\right) / 2}+E_{2} e^{-i\left(\delta_{1}-\delta_{2}\right) / 2} .
$$

b) Then Z describes the envelope function since it oscillates with a lower frequency than $e^{i\left(\delta_{1}+\delta_{2}\right) / 2}$. Since Z is a complex number it can be written in the form

$$
Z=r e^{i \theta}
$$

Determine an expression for r; this determines the amplitude of the envelope function.
c) Determine an expression for the time averaged irradiance provided that $1 / \omega_{j} \ll T \ll$ $1 / \Delta \omega$ where $\Delta \omega=\omega_{1}-\omega_{2}$. Use this to determine the maximum and minimum irradiance as time passes.

2 Superposition of three waves

Consider three waves, all produced at the same source with the same phase and polarization.

$$
\begin{aligned}
& \tilde{\mathbf{E}}_{1}=E_{0} e^{i\left(k_{1} x-\omega_{1} t\right)} \hat{\mathbf{y}} \\
& \tilde{\mathbf{E}}_{2}=E_{0} e^{i\left(k_{2} x-\omega_{2} t\right)} \hat{\mathbf{y}} \\
& \tilde{\mathbf{E}}_{3}=E_{0} e^{i\left(k_{3} x-\omega_{3} t\right)} \hat{\mathbf{y}}
\end{aligned}
$$

where $k_{2}=k_{1}+\Delta k$ and $k_{3}=k_{1}+2 \Delta k$.
a) Letting $\phi_{j}:=k_{j} x-\omega_{j} t$, show that $\phi_{2}=\phi_{1}+\Delta \phi$ and $\phi_{3}=\phi_{1}+2 \Delta \phi$ for an appropriate $\Delta \phi$. Use these to rewrite

$$
\tilde{\mathbf{E}}=\tilde{\mathbf{E}}_{1}+\tilde{\mathbf{E}}_{2}+\tilde{\mathbf{E}}_{3}
$$

in terms of ϕ_{1} and $\Delta \phi$.
b) The previous result should give a standard type of series, for whose sum there is a simple algebraic formula. Use this to determine an expression for $\tilde{\mathbf{E}}$. This expression will contain terms of the form $e^{i \alpha}-1$. Such a term can be written as $e^{i \alpha}-1=e^{i \alpha / 2}\left(e^{i \alpha / 2}-e^{-i \alpha / 2}\right)=$ $2 i e^{i \alpha / 2} \sin (\alpha / 2)$. Rewrite the expression for $\tilde{\mathbf{E}}$ using this result.
c) Show that the resulting wave is a product of a wave with wavenumber k_{2} and an envelope of the form

$$
\frac{\sin (3 \Delta \phi / 2)}{\sin (\Delta \phi / 2)} .
$$

d) Plot the envelope as a function of $\Delta \phi$ for $-5 \leqslant \Delta \phi \leqslant 5$ and use this to provide a qualitative sketch of the electric field.
e) Determine values of $\Delta \phi$ for which the envelope reaches a maximum and use this to determine the group velocity of these waves. With some trigonometry and algebra you should be able to show that the condition for a maximum is $\sin (\Delta \phi)=0$.

3 Bennett, Principles of Physical Optics, 5.14, page 223.
4 Bennett, Principles of Physical Optics, 5.15, page 224.

5 Time evolution of a wave

Suppose that, at $t=0$,

$$
\psi(x, 0)=A e^{-x^{2} / 2 \sigma^{2}}
$$

where A and σ are real and positive.
a) Determine the Fourier transform

$$
\tilde{\psi}(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \psi(x, 0) e^{-i k x} \mathrm{~d} x .
$$

b) Use the previous result to write a general expression, in integral form, for $\psi(x, t)$, at any time t.
c) Assume that $\omega=v k$ where v is independent of k. Substitute into the result from the previous part to determine $\psi(x, t)$. Describe the shape of the resulting wave and how this evolves as time passes.

