Modern Optics: Homework 12

Due: 30 September 2015

1 Spherical mirror: image production

A point source is located on the optical axis at 1.2 m from a mirror whose radius is 1.0 m . Rays leave the source at various angles, θ_{1} measured from the optical axis, are reflected and pass back through the optical axis. Use the set up in class (calculating $\theta_{i}, x, \theta_{2}, \ldots$) to answer the following, performing the calculations to three significant figures.
a) Without using any approximations, determine where the reflected ray passes through the optical axis if $\theta_{1}=3.00^{\circ}$.
b) Without using any approximations, determine where the reflected ray passes through the optical axis if $\theta_{1}=10.00^{\circ}$.
c) Without using any approximations, determine where the reflected ray passes through the optical axis if $\theta_{1}=25.00^{\circ}$.
d) Compare the results. Over what distance is the image spread?

2 Bennett, Principles of Physical Optics, 4.4, page 135.
3 Bennett, Principles of Physical Optics, 4.61, page 196.

4 Lens construction

Suppose that lenses are constructed from glass with index of refraction 1.50. The lenses must be constructed so that the focal length is 10 cm
a) If the lens has two convex surfaces of with the same radius of curvature, determine the radius needed to produce this focal length.
b) Suppose that the lens has one convex surface and another flat surface; this is a planoconvex lens. Determine the radius of curvature needed to produce this focal length.

