Modern Optics: Homework 6

Due: 4 September 2015

1 Bennett, Principles of Physical Optics, 2.15, page 42.
2 Bennett, Principles of Physical Optics, 2.24, page 51.
3 Bennett, Principles of Physical Optics, 2.26, page 51.
4 Bennett, Principles of Physical Optics, 2.27, page 51. An isotropic point source produces spherical waves.

5 Energy and complex representations of harmonic waves

Consider the harmonic electromagnetic waves described by

$$
\mathbf{E}(\mathbf{r}, t)=\tilde{\mathbf{E}}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

a) Suppose that $\tilde{\mathbf{E}}_{0}$ is real. Show that the irradiance associated with this is

$$
I=\frac{1}{2} c \epsilon_{0} \mathbf{E}(\mathbf{r}, t)^{*} \cdot \mathbf{E}(\mathbf{r}, t)
$$

b) It is possible to have complex $\tilde{\mathbf{E}}_{0}=\mathbf{E}_{0} e^{i \varphi}$ where \mathbf{E}_{0} is real. Here φ represents the phase of the wave. Show that the irradiance associated with this is also

$$
I=\frac{1}{2} c \epsilon_{0} \mathbf{E}(\mathbf{r}, t)^{*} \cdot \mathbf{E}(\mathbf{r}, t) .
$$

6 Bennett, Principles of Physical Optics, 3.37, page 116.

7 Light passing through a prism

A beam of light traveling through air is incident upon one surface of a triangular prism, which forms an equilateral triangle. Suppose that the angle between the incident beam and the prism surface is 40° and that the index of refraction of the prism material is 1.50 . Determine the direction in which the beam eventually emerges from the prism.

