Modern Optics: Homework 2

Due: 21 August 2015

1 Bennett, Principles of Physical Optics, 1.17, page 16. Note that there is a typo in the second line of Eq 1.40. It should read

$$
\frac{z_{1}}{z_{2}}=\left(\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}\right)+i\left(\frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}\right) .
$$

2 Bennett, Principles of Physical Optics, 1.18, page 17.

3 Real and imaginary parts of sums and products

In general it is true that

$$
\operatorname{Re}\left[z_{1}+z_{2}\right]=\operatorname{Re}\left[z_{1}\right]+\operatorname{Re}\left[z_{2}\right]
$$

but it is not always true that

$$
\operatorname{Re}\left[z_{1} z_{2}\right]=\operatorname{Re}\left[z_{1}\right] \operatorname{Re}\left[z_{2}\right] .
$$

Choose two complex numbers z_{1} and z_{2} that show that

$$
\operatorname{Re}\left[z_{1} z_{2}\right] \neq \operatorname{Re}\left[z_{1}\right] \operatorname{Re}\left[z_{2}\right] .
$$

and check that they satisfy the rule for the real part of a sum.
4 Bennett, Principles of Physical Optics, 1.29, page 23.

5 Complex representations of harmonic waves

The general complex representation of a harmonic wave is

$$
\tilde{\Psi}(x, t)=A e^{i(k x \mp \omega t+\phi)}
$$

and the associated real harmonic wave is

$$
\Psi(x, t)=\operatorname{Re}[\tilde{\Psi}(x, t)] .
$$

a) Choose $\phi=-\pi / 2$ determine the associated real harmonic wave.
b) Suppose that

$$
\begin{aligned}
& \Psi_{1}(x, t)=A \sin (k x-\omega t) \\
& \Psi_{2}(x, t)=A \sin (k x+\omega t)
\end{aligned}
$$

Determine the associated complex representation for each, use them to form

$$
\tilde{\Psi}(x, t)=\tilde{\Psi}_{1}(x, t)+\tilde{\Psi}_{2}(x, t),
$$

simplify this and determine an expression for the real harmonic wave in the form

$$
\Psi(x, t)=(\text { function of } x) \times(\text { function of } t) .
$$

