Modern Optics: Homework 1

Due: 19 August 2015

1 Solutions to the one dimensional wave equation

Check, by direct substitution, whether the following satisfy the classical wave equation.
a) $\Psi(x, t)=A \sqrt{x-v t}$ assuming that $x>v t$.
b) $\Psi(x, t)=A(x-\sqrt{v t})$ where $v>0$.

2 Bennett, Principles of Physical Optics, 1.3, page 8. After solving this problem, consider the special case where $a=b=1$ and $A=1$. Plot this (over the range $-10 \leqslant x \leqslant 10$) for $t=0$ and $t=2$. Does the form of the graph remain the same? How does the graph change over the period from $t=0$ to $t=2$?

3 Bennett, Principles of Physical Optics, 1.4, page 8.

4 One dimensional wave equation: separation of variables

Assume that the solution to the one dimensional wave equation can be written as

$$
\Psi(x, t)=f(x) T(t)
$$

where $f(x)$ is any function of position and $T(t)$ is any function of t.
a) Substitute this into the wave equation and manipulate this to give and expression of the form:
derivatives and functions only depending on $x=$ derivatives and functions only depending on t.
b) The previous can only be true if either side is independent of both x and t, i.e. is a constant. Set the constant equal to $-k^{2}$ where k is real, i.e.
derivatives and functions only depending on $x=-k^{2}$
and solve the resulting differential equation for $f(x)$.
c) Substitute your solution into $\Psi(x, t)=f(x) T(t)$ and then resubstitute this into the wave equation. Solve the resulting equation for $T(t)$.
d) Combine your results to obtain the general separable solution $\Psi(x, t)=f(x) T(t)$.

