Modern Optics: Class Exam II

9 November 2015

Name: \qquad

Total:

/50

Instructions

- There are 5 questions on 6 pages.
- Show your reasoning and calculations and always justify your answers.

Physical constants and useful formulae

$$
c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} \quad \mu_{0}=4 \pi \times 10^{-12} \mathrm{Tm} / \mathrm{A}
$$

Question 1

A spherical mirror has a concave surface, whose radius of curvature is 5.0 cm . An object is placed at a distance of 4.0 cm from the surface of the mirror. Determine the location of the image using equations and also using a ray tracing diagram.

Question 2

An object is located beyond the focal length of a converging lens which produces an image on a screen. The location of the object and the screen are fixed and the distance between them is D. The position of the lens can be adjusted. Let s_{o} be the distance from the lens to the object and f be the focal length of the lens. Determine a general expression for s_{o} in terms of D and f that will result in a clear image on the screen.

Question 3

A thin film of soapy water $(n=1.33)$ is held vertically in air ($n=1.00$). Light of wavelength 590 nm is incident perpendicularly to the surface of the soap film. Determine the minimum thickness of the film which results is strongly reflected light.

Question 4

Two plane wave sources have the same linear polarization and oscillate in phase with the same wavenumber, k. The waves propagate along the x axis. One of the sources is located at x_{1} and the other at $x_{2}>x_{1}$.
a) Show that the time averaged irradiance at a detector located at $x>x_{2}$ is

$$
I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos (k \Delta x)
$$

where $\Delta x=x_{2}-x_{1}$ and I_{j} is the intensity of source j in the absence of the other source.
b) Suppose that the distance between the sources can be varied. Determine the visibility of the resulting interference pattern if $I_{1}=4 I_{2}$.

Question 5

A wave pulse is represented in complex form via

$$
\psi(t)=A e^{-|t| / \tau} e^{i \omega_{0} t}
$$

where $\tau>0$ and ω_{0} are constants. Determine the Fourier transform of $\psi(t)$.

