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II. Energy in Waves

1 Energy in Waves on a String

Consider a wave on a string with mass per unit length 4 and under tension 7. A snapshot
of a portion is illustrated in Fig. II.1.1.
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Figure I1.1.1: Snapshot of a wave on a string.

The kinetic energy of the illustrated segment depends on the mass of the segment, dm,
and its transverse velocity vy and is

dK = % dmuv?
1 Oy 2
However, dm = pdz and thus
1 A\ 2
dK = = =
5 M (Bt) dz (I1.1.2)
Thus the total kinetic energy of a segment of the string from z = 1 to z = 5 is
I ay\?
Kinetic energy from 7, to 2y = K = = ] L (—) dz (11.1.3)
2 [, T\t

We might expect that there is a form of potential energy associated vith the deformation of
the string. Usually ve would obtain this via the work-kinetic energy theorem, AK = Wi
where Wyet is the net work done on a system and AK is the change in kinetic energy as the



system evolves. It turns out that applying this is more involved than the alternative method
that we will offer below. Also, the typical derivation, that yields the correct expression for
the potential energy uses a heuristic argument based on the stretch of the string and which
has no apparent connection to the work-kinetic energy theorem. We will show that the
total potential energy of a segment of the string from z = z; to z =z, is

1 [*2 dy 2
Potential energy from 1 to zo = U = 5 f T (%) dx (IL.1.4)
r1

where T' is the tension in the string. While we will prove that this is a correct expression
later, at present we can easily check that this has units of Nm = J, which are the units of
energy. With these, the energy in the string from z; to z3 is

1 %2 ay\?2 dy )
Related to this we define the energy density (energy per unit length) as
2 - 2
energy density = % [,u (%) +T (%) J . (IL.1.6)

Determining the energy between two point then involves integrating the energy density.
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The utility of energy lies in that fact that it may be conserved as time passes. We do
not necessarily expect that the energy between =1 to z will remain constant. Particularly
for a pulse of finite width, this will vary as the pulse passes through the region from z; to
z2. However, we can establish a relationship between the rate at which energy that enters
and leaves the region and the change in total energy in this region.
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Specifically,

Let £ be the energy between x; to 3. Then

where P(z) is the power transmitted from left to right (IL1.7)
at = and is given by
20y By

P = — U Ea_a’}

The proof of this starts with Eq. (I1.1.5) which gives

dE d1 =] [oy\? A\’
T @z f [”(5;) +T(a) d
1 [*2] 8 (oy\* .0 [oy\*
-3 [ b5 (&) 1w () |
1 wz[ Oy { 0%y By 62y]
— 5 /xl L2,u ‘ ('5; +2T5'—ataz4d$ (1118)
Now v? = T/mu gives T = uv? and thus
dE  ["2[8y (0% 2Oy 8%y
g -—,Ua/m [E (W +v 37 57 dz. (I1.1.9)
Consider the integrand in the second term in this expression
oy &y 0 (Oydy Oy 8%y
9c B0z~ B% (aa Bt 52 (IL.1.10)
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Thus
dE “2[ gy (8%y 20 Oy dy 5 Oy 6%y
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With the definition of the power transmitted,
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(IL.1.12)

(IL1.13)

This proves Eq. (I1.1.7) and also establishes the validity of the definition of the potential

energy, Eq. (I1.1.4).
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