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Phys 230
Fall 2013

Intermediate Dynamics: Group Exercises 8

Complex Numbers and Oscillations

1 Complex Functions and Simple Harmonic Motion

a) Let z(t) = Ae™* where A is any real number. Show that the real part of this is a solution
to the equation of motion for simple harmonic motion. Repeat this for the imaginary

part.

b) Express z(t) = Ae** in terms of real and imaginary parts and use this to determine an
expression for ?T;‘ Use this and the rules of complex algebra to show that

% = iwAe™ = qwz(t).

Generalize this to the case where A is replaced by any complex number, D.

2 Damped Driven Oscillator

The equation of motion for a damped driven oscillator is

d2—$+ d—£+w2x @cos(wt)
az V@ T T '

a) Suggest possible complex functions g(t) such that Re[g(t)] = cos (wt). Find a simple
function of this type in which trigonometric functions do not appear.

b) Consider

d22+ dz+ 9 Fo
az g TWES

EWt. (1)
Assume that the solution to this has form
z(t) = De¥t

where D and u are complex constants. Substitute this into Eq. (1) and find algebraic
expressions for  and D,

¢) The complex number D can be represented in the form
D= Ae™¥
where A and J are real. Using this, determine an expression for
z(t) = Re[z(t)]

and verify that A is the amplitude of oscillation.



d) Show that
R 1

Ae™® =
m wd

a—w? 4wy
Using the fact that A = |Ae™*] find an expression for A in terms of Fy, m, w,wo, 7.

e) Determine an expression for the phase 8. (Hint: Use the fact that 1/z = 2*/|z|?.)



Phys 230
Fall 2013

Intermediate Dynamics: Group Exercises 8 Solutions
Complex Numbers and Oscillations

1 Complex Functions and Simple Harmonic Motion

a) Let 2(t) = Ae®! where A is any real number. Show that the real part of this is a solution
to the equation of motion for simple harmonic motion. Repeat this for the imaginary

part.
b) Express z(t) = Ae™! in terms of real and imaginary parts and use this to determine an
expression for %f—. Use this and the rules of complex algebra to show that

vj—i = iwAe™t = jwz(t).

Generalize this to the case where A is replaced by any complex number, D.

Answer:

a) Using the Euler relation,

2(t) = Ae™?
= A[cos (wt) + isin (wi)]
= Acos (wt) + iAsin (wt)

Then
Re[2(t)] = Acos (wt)

and this satisfies the equation of motion for simple harmonic motion. Likewise
Im|2(t)] = Asin (wt)

also satisfies the equation of motion,

b) Again
z(t) = Acos (wt) + 1A sin (wt).
Thus
dz d o
T % [A cos (wt) + iAsin (wt)]

= A[—w sin{(wt) + iw cos (wt)]
= iwA [isin (wt) + cos (wt)]

= iwAe™ = jwzl(t).
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