Phys 230
Fall 2013

Intermediate Dynamics: Group Exercises 8

Complex Numbers and Oscillations

1 Complex Functions and Simple Harmonic Motion

a) Let z(t) = Ae™! where A is any real number. Show that the real part of this is a solution
to the equation of motion for simple harmonic motion. Repeat this for the imaginary
part.

b) Express z(t) = Ae™? in terms of real and imaginary parts and use this to determine an
expression for %. Use this and the rules of complex algebra to show that
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Generalize this to the case where A is replaced by any complex number, D.

2 Damped Driven Oscillator

The equation of motion for a damped driven oscillator is
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a) Suggest possible complex functions g(t) such that Re[g(t)] = cos (wt). Find a simple
function of this type in which trigonometric functions do not appear.
b) Consider
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Assume that the solution to this has form

2(t) = De™

where D and u are complex constants. Substitute this into Eq. (1) and find algebraic
expressions for u and D,

¢) The complex number D can be represented in the form
D= Ae™¥
where A and § are real. Using this, determine an expression for
x(t) = Re[z(t)]

and verify that A is the amplitude of oscillation.



d) Show that
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Using the fact that A = [Ae™®| find an expression for A in terms of Fyy, m,w,wo, 7.
e) Determine an expression for the phase 6. (Hint: Use the fact that 1)z = 2*/|z|2.)



