Question 1

A traveling wave on a string is described by the displacement via

 $y(x,t) = A\cos\left(kx - \omega t\right).$

Which of the following is true?

- 1. The energy density is independent of A.
- 2. The energy density is proportional to A.
- 3. The energy density is proportional to A^2 .

Energy for Sinusiodal Waves

Sinusoidal traveling wave: $y(x,t) = A \sin(kx - \omega t + \phi)$

Energy density =
$$\mu \omega^2 A^2 \sin^2 (kx - \omega t + \phi)$$

Question 2

The energy density for a sinusoidal traveling wave on a string is

 $y(x,t) = \mu \omega^2 A^2 \sin^2 (kx - \omega t).$

Which of the following is true?

- 1. The total energy is zero.
- 2. The total energy is positive.
- 3. The total energy is infinite.

Energy for Gaussian pulses

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Question 3

A traveling wave on a string is described by the displacement via

 $y(x,t) = A\cos\left(kx + \omega t\right).$

Which of the following is true?

- 1. The power is zero.
- 2. The power is positive.
- 3. The power is negative.