A triangular shaped pulse propagates along a string at a constant speed. A snapshot at one instant is illustrated.

Which of the following best represents the vertical position of the point on the string labeled P as time passes?

Gaussian Pulses

One possible Gaussian pulse: $y(x,t) = e^{-(x-4t)^2/1}$. Illustrated at two times.

Two snapshots of a string at intervals 2 s apart are as illustrated.

Which of the following best describes this pulse?

1. $y(x,t) = 2e^{-(x-3t)^2/a^2}$ 2. $y(x,t) = 2e^{-(x-2t)^2/a^2}$ 3. $y(x,t) = 2e^{-(x+t)^2/a^2}$ 4. $y(x,t) = 2e^{-(x+2t)^2/a^2}$ 5. $y(x,t) = e^{-(x-2t)^2/a^2}$

A particular Gaussian pulse is:

$$y(x,t) = e^{-(x-vt)^2/2}$$

A snapshot of this at t = 0 is illustrated below.

Which of the following is/are true about the velocities with which points on the string move?

- 1. All points move with velocity v.
- 2. The maximum velocity occurs at x = 0.
- 3. The velocity is negative for x < 0 and positive for x > 0.
- 4. The velocity is negative for x > 0 and positive for x < 0.

Sinusoidal Wave

A left moving sinusoidal wave has the form:

 $y(x,t) = A\sin\left[k\left(x+vt\right)\right].$

Which of the following is the angular frequency of oscillation?

1.
$$\omega = kv$$

2. $\omega = kvt$
3. $\omega = kx$
4. $\omega = k$
5. $\omega = kt$