Simple Harmonic Motion: Velocity and Acceleration

For a solution of the form $x(t) = A\cos(\omega t)$ and $\omega < 1$.

Suppose that a harmonic oscillator has displacement x_0 and velocity v_0 at t = 0. The general solution to the equation of motion for this oscillator is:

$$x(t) = A\cos(\omega t) + B\sin(\omega t).$$

Which of the following is true?

1.
$$A = x_0$$

2. $B = x_0$
3. $A + B = x_0$
4. $A - B = x_0$

Suppose that a harmonic oscillator has displacement x_0 and velocity v_0 at t = 0. The general solution to the equation of motion for this oscillator is:

$$x(t) = A\cos(\omega t) + B\sin(\omega t).$$

Which of the following is true?

1.
$$B = v_0$$

2. $B = \omega v_0$
3. $B = -\omega v_0$
4. $B = \frac{v_0}{\omega}$
5. $B = -\frac{v_0}{\omega}$

The general solution to the equation of motion for a simple harmonic oscillator is.

 $x(t) = C\cos\left(\omega t + \phi\right).$

Consider this in the context of a spring with spring constant k and a block of mass m.

Which of the following is true regarding the energy of this oscillator?

1.
$$E = C$$

2. $E = C^2$
3. $E = \frac{1}{2}kC$
4. $E = \frac{1}{2}kC^2$
5. $E = \frac{1}{2}mC^2$

The position of a block of mass m attached to a spring of constant k is illustrated below:

Consider the object at t = 2 s. Which of the following is true?

- 1. K = 0 and U = 0
- 2. K = 0 and U > 0
- 3. K > 0 and U = 0
- 4. K > 0 and U > 0