Question 1

Consider muons each traveling at velocity $\frac{c}{2}$ relative to a lab frame. You aim to predict the distance (observed from the lab frame) traveled by such a muon using the muon lifetime. Which of the following is correct?

- 1. The distance traveled by these muons as predicted using classical physics is the same as that as predicted by special relativity.
- 2. The distance traveled by these muons as predicted using classical physics is less than that as predicted by special relativity.
- 3. The distance traveled by these muons as predicted using classical physics is more than that as predicted by special relativity.

Question 2

A muon travels with constant velocity with respect to a lab bench. The length of the lab bench as measured from the muon's rest frame is $L_{\text{muon frame}}$. The length of the lab bench as measured from the frame in which the lab bench is at rest is $L_{\text{lab frame}}$.

What does special relativity imply for these?

- 1. $L_{\text{lab frame}} = L_{\text{muon frame}}$
- 2. $L_{\text{lab frame}} > L_{\text{muon frame}}$
- 3. $L_{\text{lab frame}} < L_{\text{muon frame}}$