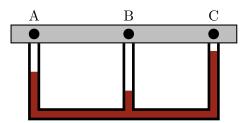
Intermediate Dynamics: Class Exam I

17 September 2012

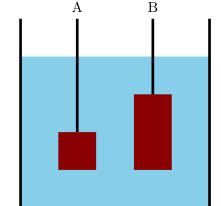
Name:	Total:	/50

Instructions


- There are 6 questions on 5 pages.
- Show your reasoning and calculations and always justify your answers.

Physical constants and useful formulae

$$\begin{split} \rho_{\rm water} &= 1.00 \times 10^3 \, {\rm kg/m^3} & 1 \, {\rm atm} = 1.01 \times 10^5 \, {\rm Pa} & T_{\rm K} = T_{\rm C} + 273 \\ N_{\rm A} &= 6.02 \times 10^{23} \, {\rm mol^{-1}} & k_B = 1.38 \times 10^{-23} \, {\rm J/K} & R = 8.31 \, {\rm J/mol \ K} \end{split}$$


Question 1

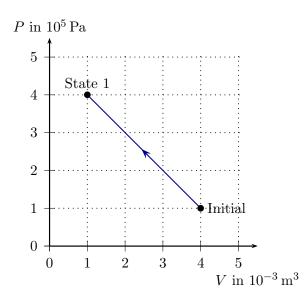
Air flows from left to right through a pipe of possibly variable diameter, which is enclosed in a gray tube as illustrated. The axis of the pipe is horizontal. Another set of pipes containing a liquid is connected to the pipe transporting air at three locations labeled A, B and C. Rank the fluid pressures, air speeds and diameters of the pipe at locations A, B and C. Explain your choice.

Question 2

Two blocks are suspended at rest in the same fluid and both are completely immersed. The blocks have the same mass but the volume of block B is double the volume of block A. Which of the following (choose one) is true of the tensions in the strings?

- a) $T_{\rm A} = T_{\rm B}$
- b) $T_{\rm A} > T_{\rm B}$
- c) $T_{\rm A} < T_{\rm B}$
- d) Depends on the depth at which A and B are suspended.

/4


Question 3

A small cubic container has sides of length $0.020\,\mathrm{m}$ and contains air. The pressure within the container is $4.0\times10^{-2}\,\mathrm{Pa}$. Assume that the air is a diatomic ideal gas. Determine the total internal/thermal energy of the air within the container.

Question 4

A container holds 0.10 mol of a monoatomic ideal gas. The gas is in the illustrated initial state and first undergoes the compression to state 1 indicated by the line on the PV diagram. This is followed by a reduction in pressure at a constant volume to state 2, which has the same pressure as the initial state.

a) Determine the temperatures of the gas in states 1 and 2.

b) Determine the work done on the gas, the change in thermal energy and the heat supplied for *each of the two parts* of the process. Enter your results in the table on the next page.

Question 4 continued ...

Stage	$\Delta E_{ m th}$	Q	W
Initial $\rightarrow 1$			
$1 \rightarrow 2$			

Question 5

Two identical samples of an ideal gas each initially have the same pressure, P_i , volume, V_i and temperature T_i . Sample A undergoes an isothermal expansion to volume $5V_i$. Sample B undergoes an expansion at constant pressure to volume $5V_i$ and after this a constant volume process which takes it back to its original temp T_i . Which of the following (choose one) is true regard the heat that enters or leaves each gas sample?

- a) $Q_A = Q_B$
- b) $Q_A < Q_B$
- c) $Q_A > Q_B$

/4

Question 6

Two moles of neon, a monoatomic gas, initially at pressure P_i are compressed isothermally, reaching a final state with pressure $P_f = 2P_i$. The initial rms average speed of the gas molecules was $500 \,\mathrm{m/s}$. Assume that the gas is an ideal gas. Which of the following (choose one) is the final rms speed?

- a) $1000 \, \text{m/s}$
- b) $500\sqrt{2} \text{ m/s}$
- $c) 500 \,\mathrm{m/s}$
- $d) 250 \,\mathrm{m/s}$
- e) $\frac{500}{\sqrt{2}}$ m/s

Explain your answer.