Quantum Computing with Ensembles

David Collins
Department of Physics, Bucknell University, Lewisburg PA
dcollins@bucknell.edu
http://www.eg.bucknell.edu/ dcollins/index.html

Outline

"All information is physical."

- Classical computing and complexity.
- Quantum mechanics of qubits.
- Quantum computing: standard approaches.
- Quantum computing: ensemble approaches.

Classical mechanics governs the behavior and scope of conventional information processing devices (PCs, cell-phones, etc...).

Quantum mechanics extends information processing possibilities beyond those accessible to conventional classical information processing devices.

Integer Multiplication

How difficult is integer multiplication?

- Two single digit integers:

$$
7 \times 8=56
$$

- Two two digit integers:

$$
\begin{aligned}
& 27 \\
& 18 \\
& \hline 216 \\
& 27 \\
& \hline 486
\end{aligned}
$$

- Two three digit integers:

727
348
5816
2908
2181
252996

- Two n digit integers:

Approximately n^{2} single digit multiplications and additions.

Polynomial Complexity

- Number of basic operations as function of input size n.
- Assess behavior for large n.
- Linear, $O(n)$:

$$
\text { Operations }=\alpha n+\ldots
$$

- Quadratic, $O\left(n^{2}\right)$:

$$
\text { Operations }=\alpha n^{2}+\ldots
$$

- Polynomial, $O\left(n^{k}\right)$:

$$
\text { Operations }=\alpha n^{k}+\ldots
$$

Integer Factorization

How difficult is integer factorization?

- Two digit integer:

$$
\begin{aligned}
& 91=a \times b \\
& \Rightarrow a=7 \quad \text { and } \\
& \quad b=13
\end{aligned}
$$

- Three digit integer:

$$
\begin{aligned}
713=a \times b \\
\Rightarrow a=? \quad \text { and } \\
b=?
\end{aligned}
$$

- Trial and error factorization of n digit integer N. Number of guesses:

$$
\sqrt{N} \simeq \sqrt{10^{n}}=10^{n / 2} \quad \text { Exponential in } n
$$

Best known integer factorization is exponential:

$$
O\left(\left(\exp \left(n^{1 / 3}(\log n)\right)\right)^{2 / 3}\right)
$$

Computational Complexity

- How many additional digits to double the number of steps?
- Quadratic, $O\left(n^{2}\right)$):

$$
n_{\text {new }} \simeq \sqrt{2} n_{\text {old }}
$$

- Exponential, e.g. $O\left(2^{n}\right)$

$$
n_{\text {new }} \simeq n_{\text {old }}+1
$$

> Polynomial $\rightsquigarrow \leadsto$ easy. Exponential $\longleftrightarrow \rightsquigarrow$ hard.

Classical Information Representation

Abstraction

- Binary digit (bit):

$$
\text { State is one of } 0 \text { or } 1
$$

- Binary representation:

$$
\begin{gathered}
0 \equiv 000 \quad 1 \equiv 001 \quad 2 \equiv 010 \ldots \\
\mathrm{PA} \equiv \underbrace{1001111}_{\mathrm{P}} \underbrace{1000001}_{A}
\end{gathered}
$$

Realization

- Pegs and beads

Classical Information Processing - Basic Gates

Abstraction

- Example: XOR on two bits

a	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

- Example: XOR via pegs and beads
- Implementation rules:
- Red and blue peg beads \rightarrow green peg.
- Two beads on one peg \rightarrow remove both.
- 1 XOR 0

- 1 XOR 1

Classical information is usually viewed in the abstract.

Reversible Computing

Reversible versions of basic gates exist.

- Example: Standard XOR:

Find a, b if $\quad a \oplus b=0$

- Reversible XOR:

- Vector representation for bit states:

$$
00 \equiv\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad 01 \equiv\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad 10 \equiv\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad 11 \equiv\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

- Matrix representation for gates:

$$
\mathrm{XOR} \equiv\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Quantum computing allows superpositions of bit states.

Spin $\frac{1}{2}$ Quantum Systems

> Spin $=$ intrinsic angular momentum of subatomic and atomic scale particles.

- Stern-Gerlach measures angular momentum via magnetic dipole moment.

- Examples: electron, proton, $\mathrm{H},{ }^{13} \mathrm{C}$.

Quantum States and Information

Information is stored as a state a spin $\frac{1}{2}$ quantum system (qubit).

Energy Eigenstates

State: $|0\rangle$

Classical bit state.

Superposition states

State: $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ State: $\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)$
Beyond classical bit states!

General state: $|\boldsymbol{\psi}\rangle=\boldsymbol{\alpha}|0\rangle+\boldsymbol{\beta}|1\rangle \sim\binom{\boldsymbol{\alpha}}{\boldsymbol{\beta}} \quad$ where $|\alpha|^{2}+|\beta|^{2}=1$.

Multiple Qubits

Multiple qubit states represented via tensor products.

- Two-qubit unentangled state (e.g. two spins along the x axis):

$$
(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle)=|00\rangle+|01\rangle+|10\rangle+|11\rangle
$$

where

$$
|a b\rangle \equiv|a\rangle|b\rangle:=|a\rangle \otimes|b\rangle .
$$

- Quantum mechanics allows any (often entangled) superposition:

$$
|\psi\rangle=\alpha_{0}|00\rangle+\alpha_{1}|01\rangle+\alpha_{2}|10\rangle+\alpha_{3}|11\rangle \sim\left(\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)
$$

where

$$
\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}+\left|\alpha_{3}\right|^{2}=1
$$

Quantum Measurements and Information Extraction

Information is extracted via quantum measurements.

- Measurements of z component of single qubit spin are not deterministic:

$$
\alpha|0\rangle+\beta|1\rangle \leadsto\left\{\begin{array}{l}
S_{z}=+\hbar / 2 \text { with probability }|\alpha|^{2} \\
S_{z}=-\hbar / 2 \text { with probability }|\beta|^{2}
\end{array}\right.
$$

- Measurement induces "collapse" of state:

S_{z}	Bit value	State collapse
$+\hbar / 2$	0	$\alpha\|0\rangle+\beta\|1\rangle \rightarrow\|0\rangle$
$-\hbar / 2$	1	$\alpha\|0\rangle+\beta\|1\rangle \rightarrow\|1\rangle$

Quantum Dynamics and Information Processing

Information is processed via unitary transformations ("gates").

- Linear time evolution

$$
\left|\psi_{\text {final }}\right\rangle=\hat{U}\left|\psi_{\text {initial }}\right\rangle \quad \text { where } \quad \hat{U}^{\dagger} \hat{U}=\hat{I} .
$$

- Example: Single qubit quantum NOT

$$
\hat{U}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { transforms }\binom{\alpha}{\beta} \rightarrow\binom{\beta}{\alpha}
$$

and generalizes classical NOT

$$
\binom{1}{0} \leftrightarrow\binom{0}{1}
$$

Quantum Gates

Reduction to one and two qubit unitary operations.

Single qubit rotations

- Example: Single bit rotation

$$
\begin{gathered}
|\psi\rangle-\hat{R}_{y}(\theta)-\hat{R}_{y}(\theta)|\psi\rangle \\
\hat{R}_{y}(\theta)=\left(\begin{array}{cc}
\cos (\theta / 2) & -\sin (\theta / 2) \\
\sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right)
\end{gathered}
$$

- On "classical" $|0\rangle($ for $\theta=\pi / 2)$:

$$
\begin{aligned}
\binom{1}{0} & \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{1}{0} \\
& =\frac{1}{\sqrt{2}}\binom{1}{1}
\end{aligned}
$$

Two-qubit gates

- Example: Controlled-NOT

$$
\hat{U}_{\mathrm{CN}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { on }\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)
$$

Dynamics: Gate Construction

Gate construction via evolution under the system Hamiltonian.

- Schrödinger equation:

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

gives unitary evolution

$$
|\psi(t)\rangle=\hat{U}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

- For time independent \hat{H} :

$$
\hat{U}\left(t, t_{0}\right)=e^{-i \hat{H}\left(t-t_{0}\right) / \hbar} .
$$

- Example: Magnetic field along \hat{y} :

$$
\hat{H}=\hbar \gamma B_{1}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

applied for $t-t_{0}=\frac{\theta}{2 B_{1} \gamma}$

Quantum Computing Scheme

- Uses distinguishable qubits.

- Artful construction of evolution steps uses:
- superpositions,
- entangled states.

> Quantum algorithms provide speedups (fewer computational steps).

Quantum Algorithms

- "Toy" algorithms:
- Global properties of binary functions.
- Exponential speedup.
- Deutsch-Jozsa, Bernstein-Vazirani and Simon's algorithms.
- Searching (Grover):
- Search unstructured database.
- Quadratic speedup in terms of oracle queries.
- Integer factorization (Shor):
- Factorize integer $N=p q$.
- Problem size $L:=\log _{2} N$.
- Classical: $O\left(\exp \left(L^{1 / 3}(\log L)\right)\right)^{2 / 3}$.
- Quantum: $O\left(L^{3}\right)$.

Decimal digits	Classical	Quantum
100	$\sim 10^{13}$	$\sim 10^{7}$
200	$\sim 10^{17}$	$\sim 10^{9}$
300	$\sim 10^{20}$	$\sim 10^{10}$
400	$\sim 10^{23}$	$\sim 10^{10}$

- Age of universe $\sim 10^{17}$ s.
- Can break RSA code.

Deutsch-Jozsa Algorithm

Deutsch problem concerns properties of simple binary functions.

Single Bit Binary Functions

- Maps

$$
\begin{aligned}
\{0,1\} & \xrightarrow{f}\{0,1\} \\
x & \mapsto f(x)=a x \oplus b
\end{aligned}
$$

where $a, b \in\{0,1\}$.

- Addition modulo 2 :

$$
\begin{array}{ll}
0 \oplus 0:=0 & 0 \oplus 1:=1 \\
1 \oplus 0:=1 & 1 \oplus 1:=0
\end{array}
$$

- Task: Find a.

Function Evaluation

- Use unitary function evaluation:

for $x, y \in\{0,1\}$.
- "Classical" approach requires two function evaluations:

$$
\begin{array}{lll}
|0\rangle|0\rangle & \rightarrow & |0\rangle|b\rangle \\
|1\rangle|0\rangle & \rightarrow & |1\rangle|a \oplus b\rangle
\end{array}
$$

Deutsch-Jozsa Algorithm

Quantum superposition helps to solve the Deutsch problem with just one function evaluation!

- Use quantum superpositions.

$$
\hat{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- Upper qubit state before Hadamard:

$$
\begin{array}{ll}
\text { If } \mathrm{a}=0: & \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{\sqrt{2}}\binom{1}{1} \\
\text { If } \mathrm{a}=1: & \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=\frac{1}{\sqrt{2}}\binom{1}{-1}
\end{array}
$$

- Upper qubit state after Hadamard:

$$
\begin{array}{ll}
\text { If } \mathbf{a}=0: & \binom{1}{0}=|0\rangle \\
\text { If } \mathbf{a}=1: & \binom{0}{1}=|1\rangle
\end{array}
$$

Spin z measurement yields a.

Nuclear Magnetic Resonance

Nuclear Spin Spectroscopy

- Spin $\frac{1}{2}$ nuclei in strong magnetic field, \vec{B}_{0}.
- Selective manipulation by tuning frequencies of external fields.
- Precession detected via readout coils.
- Example: H and ${ }^{13} \mathrm{C}$ nuclei of alanine.

Source: Stoltz Group, Dept. of Chemistry,
Caltech.

NMR Quantum Computing

NMR: an accessible technology for small scale quantum computers.

Qubits

- Distinct nuclear spins provide qubits.
- Example: The ${ }^{13} \mathrm{C}$ nuclei of alanine give three qubits

- Single qubit gates: spin selective external magnetic fields.
- Two qubit gates: evolution under spin-spin coupling.

Issues

- Readily available technology.
- Weak interactions with environment \Rightarrow many gates before information is degraded.
- Algorithm implementation:
- Shor factorization - 7 qubits.

Vandersypen et.al, Nature 414, 883-7 (20 Dec. 2001).

- Grover search - 3 qubits.

Vandersypen et.al, App. Phys. Lett. 76, 646-8 (2000).

- Ensemble initialization and readout.

Ensemble Quantum Computing

Ensemble of Identical Computers

- NMR sample with $\approx 10^{20}$ identical molecules

- Rapid molecular motion \Rightarrow no intermolecular interactions.

Statistically Mixed States

- Quantum state varies through ensemble, e.g. thermal equilibrium:
$|0\rangle$ with prob $\approx \frac{1}{2}\left(1+\frac{\hbar \omega}{2 k_{B} T}\right)$
$|1\rangle$ with prob $\approx \frac{1}{2}\left(1-\frac{\hbar \omega}{2 k_{B} T}\right)$
$\omega=$ precession frequency about \vec{B}_{0}.
- Weak polarization:

$$
\hbar \omega / 2 k_{B} T \approx 10^{-4}
$$

Mixed state input \Rightarrow alternative initialization.
Ensemble average output \Rightarrow alternative readout.

Ensembles: Initialization and Readout

Initialization

- Non-unitary scheme prepares pseudo-pure state.

Thermal eq. state

Completely random + pure state

- Poor scaling common:

Signal strength $\sim n / 2^{n}$
where $n=$ number of qubits.

Readout

- Sample averages over ensemble with M members.

$z_{5}=1$

$$
\bar{z}=\sum z_{i} / M
$$

- Majority vote decisions: $\bar{z} \stackrel{?}{>} 1 / 2$.

Non deterministic output.

Modified Algorithms for Ensemble QC

Readout

- Converted "deterministic" algorithms
- Grover search (one marked item) unnecessary.
- Grover search (few marked items) few runs plus filtering.
- Shor factorization - duplication of quantum computers.
- Modified algorithms require fewer steps:

Grover search can be truncated.
D. Collins, Phys. Rev. A 65, 052321 (2002).

Initialization

- Use noisy thermal equilibrium input states?
- Bernstein-Vazirani algorithm:
- Standard thermal equilibrium state plus unmodified algorithm plus expectation values satisfactory.
- Deutsch-Jozsa algorithm:
- Existing "one pure qubit plus maximally mixed state" approach unsatisfactory.

Arvind, D. Collins, Phys. Rev. A 68, 052301 (2003).

- Grover, Shor: - ?

Single Bit Output: Statistics

Framework

- Pure state quantum algorithm:

$$
\left|\psi_{\mathrm{i}}\right\rangle \rightarrow\left|\phi_{z}\right\rangle|z\rangle
$$

where $z=0,1 \sim$ algorithm output.

- Mixed state algorithm initial state:

$$
\rho_{\mathrm{i}}=\frac{1-\varepsilon}{2^{n}} \hat{I}^{\otimes n}+\varepsilon\left|\psi_{\mathrm{i}}\right\rangle\left\langle\psi_{\mathrm{i}}\right|
$$

- Polarization $\varepsilon \sim$ fraction of molecules in pure state gives:

$$
\begin{aligned}
\operatorname{Pr}(z) & =\frac{1+\varepsilon}{2} \\
\operatorname{Pr}(1-z) & =\frac{1-\varepsilon}{2}
\end{aligned}
$$

Classical vs Quantum Ensemble

- For given ensemble size, M :

Polarization required for quantum to outperform classical probabilistic using comparable resources?

- Deutsch-Jozsa

B Anderson, D. Collins, Phys. Rev. A 72, 042337 (2005).

Quantum Information Arena

Theory

Practice

- NMR
- Photons
- Trapped Ions
- Quantum Dots
- Doped Silicon
- Superconducting Circuits

Future Directions

Ensemble QC

- Can other standard quantum algorithms and applications be tailored for ensemble QC?
- What quantum resources does ensemble QC require?
- Where does ensemble QC lie in relation to standard QC and classical computation?

General

- Quantum mechanics provides a new information processing paradigm.
- Information is stored and manipulated in ways fundamentally different from those for classical information processing.
- The laws of physics dictate information processing possibilities and limitations.

