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Computing Numerical Integrals

D. S. Abrams and C. P. Williams, quant-ph/9908083 (1999)
J. F. Traub and H. Wozniakowski, quant-ph/0109113 (1999)

Path integral: /DmF(ac)

l

Integral: /.../dml...dxnf(xl,...,:cn)

l

1 M-—1 M-—1
Sum: — D fwn /M,y /M)
y1=0 yn=0

! !

Monte Carlo O(1/€%)| | Quantum O(1/g) for
for accuracy e accuracy €




Storing Information

Information is stored as a state of a collection of
distinguishable two-state quantum systems (qubits).

» Example: Spin % particle in a magnetic field represents a single
conventional bit via its energy eigenstates.

19) = cos (6/2)e**/2|0) + sin (6/2)etT?¥/2|1)




Multiple qubits

General state of an n qubit system:

> “Binary” format

1
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where
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» “Decimal” format
o2m_1

)= 3 arle)

z=0
where x,, . .. x1 is the binary representation of x and

|lz) = |zn)...|z1).

» Computational basis:
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Extracting Information

Information is extracted by performing a projective
measurement in the computational basis.

> Possible outcomes:
zec{0,...,2" -1}
> Probability of outcomes:
2" —1
)= 3" aglz) — Prob(z) = |as|’.

=0

> The same quantum computation can result in many different
outcomes, some of which may be erroneous.

> Example: Spin 3 particles in a magnetic field:

> For each qubit, 7, measure the component of the spin along
the magnetic field

Spin for qubit j T

Up (+h/2) 0
Down (—h/2) 1




Processing Information

Information is processed by applying a sequence of
unitary transformations (“gates”).

[ Ctinal) = Un - .. U1 [Pinitial) where A}Uj =

> Quantum algorithms are described via sequences of unitaries.
> U'j can be decomposed into a product of fundamental gates:

> Single qubit rotation through angle 6 about axis n:

) R;(0) exp(—in.36/2) 1)
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> Two qubit controlled-NOT:

Control: |z) |z)




Gate construction

Controlling a quantum system is usually envisaged in terms
of the system Hamiltonian, which must be related to unitary
transformations.

» Example: Two spin % particles in external magnetic fields:

A

Hy = 8)10-'551) + w20'£,2)1+i]0'£,2) X 0'21)/

e ~ e .
External field along 2 Internal coupling

ﬁl(t) = B cos(wt + ¢) (0;1) + 0_582))

J

External field along &

where H () can be applied for arbitrary durations.
> Generates unitary evolution operator:
(W (t:)) = [¥(t) = Ut t;) [¥ ()
satisfying
ih2U(tt) = HEU(t, L)

Uty t;) = I

> In practice, choose simple f[l(t) to give fundamental gates.




Amplitude Amplification

numerical integration) offering quadratic speedups.

L. K. Grover, Proc 30th ACM STOC, 53-62 (1998)

Example: Unstructured search

> Alice randomly chooses
se€{0,...N —1}.

> Bob must determine s using:

> Unitaries independent of s and

> An oracle supplied by Alice:

Us |z) |y) = |z) |y ® 6zs)  where { ; i
> “Classical” usage:
Us|z) |0) = |@) |8us) -

» Classical sequential search:

~ N
2

Y

oracle queries on average.

Basis for quantum algorithms (Grover's search, mean estimation,

G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, quant-ph/0005055 (2000)




Classical Search on a Quantum Computer

» Assume N = 2%,

|0) —
0) — —
L qubits \% U, Measure — x
| 10) — _
|0) —  Measure —+ m

Vo := (s| V']0) #0

» System evolution:

N-1 N-—-1
0) [0y = >~ Vo lz) [0) = > Vig lz) |62s)
=0 =0

Prob(m = 1) = |V30|2 = O ( 1 ) runs on average.

Vsol?
» Hadamards are optimum:
Vi=H®.. 00 A= (1 1
= =7%l1 4
= |Vaol? L1 O(N)
= —F = — runs on average.
s0 2L N g




Quantum Search by Amplitude Amplification

» Modified oracle for L qubits

Iy |z) = (—1)%5 |z) forx =0,...,N — 1.
features in

0) T H H H -
Repetitions of
1% Is | WY 11 1% Q followed by
measurement.

o— H H H H -

| |
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Ip|z) = (=1)°0 |z)
> After m applications of Q:
| W) =cos(B(2m +1)/4) |s ) + sin (0(2m + 1)/4) |s)

where
0 := 2 arccos (1 — 2 |V30|2)

V10) = Vso |s))

1
e V1= Vaol? (

Applications of Q can amplify the amplitude of |s).




Amplifying Small Success Probabilities

For |%0| < 1:
6’%ZJL|VSO|

Initially
W) ~ [sy)

Each application of C:Q “rotates” through 6/2 = 2|V
towards |s). After about

/2 0w
2|Vsol  4|Vsol

applications of C:Q measurement yields s with probability at
least 1 — |Vo!°.

Using amplitude amplification s can be determined with
near certainty with just O (lV_lol) oracle queries.
S

For searching use:

A

V=H®..QH = |Vyo| = 1/VN

O (\/ N) oracle queries on average to determine s.
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Estimating Probability Amplitudes

Amplitude amplification also speeds up estimation of probability
amplitudes.

> For a unitary operation V such that, for some s,

7 0<p<l1
OZ>ps+ 1 —p?ls where Te \
L (s[s1) =0

determine p with error at most € using minimum number of
applications of V.

> N independent binary tests:

|0) — ]

vV : Measure

0)

pRng/N

where n, is the number of times measurement returns s.

O(1/€?) applications of V' needed to estimate p to
accuracy €.
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Quantum Assistance

Small fixed number of binary tests, Ny, required to determine p

1

to accuracy € = 7.

Refine accuracy by replacing most of the repeated binary
tests with amplitude amplification using

Q := ViV i,

> For p < 1/2% amplify to improve estimate

o 1/2F p 1

R

1 / 4 - 1/2

using O(1/2%"1) applications of Q and Ny binary tests to
find p with accuracy 1/2F%
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General Probability Amplitude Estimation
For any 0 < p < 1 proceed iteratively to determine binary
representation:

1 1

1
p—§p1+1p2+...+2—kpk+...

1: For moderate j obtain

1

1 1
E =— — oo+ —p;
2p1+4p2+ +2Jpg

using N, applications of V' (accuracy 1/2%).

2: Let p := p — E so that 0 < p’ < 1/2j and assume
existence of V;

0y 2 ' sy + /1 - p2s1) .

3: Use amplitude amplification to get accuracy 1/2‘7'4rl
~ Pit1 after O(1/2j+1) applications of Q

and set .
4: Repeat steps 2 and 3.

O((log £) /) applications of @ needed to determine
p with accuracy €.
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Quantum Summation

L. K. Grover, Proc 30th ACM STOC, 53-62 (1998)
D. S. Abrams and C. P. Williams, quant-ph/9908083 (1999)

» Compute
M—1

D DR TR
Y1s--Yg=0
where 0 < f(y1,-- -, ya) < 1.
» Compose v

0Y]0...0)
1

1 M-1

— > 10) Y1, va)

Y1s---Yqg=0

!
M-1
> flyi- 92 10) [y, - ya)

Y1,---Yyqg=0

M—1
+ 3 \/1—f(y1,...,yd)2|1>|y1>--->yd>

Y1s---Yqg=0

1
v Ma

)
T|0) |0...0) 4 orthogonal terms

"~

|$)

» Quantum probability amplitude estimation gives T with
accuracy € with O(1/€) applications of V.
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Summary

» Amplitude amplification provides quadratic speed up in
numerical integration.

> Alternative schemes exist involving quantum counting.

> Experiments still distant: NMR leads with 7 qubits.

» References:

J. F. Traub and H. Wozniakowski, quant-ph/0109113 (1999)

D. S. Abrams and C. P. Williams, quant-ph/9908083 (1999)

L. K. Grover, Proc 30th ACM STOC, 53-62 (1998)

G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, quant-ph/0005055 (2000)

15



