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Abstract
We consider optimal estimation of the parameter describing a bit-flip channel. Using the quantum
Fisher information as a measure of the accuracy of the parameter estimation, we show that entangle-
ment offers no advantage for multiple uses of the channel. This contrasts with parameter estimation
in depolarizing channels, where entanglement offers a modest advantage and unitary channels where
entanglement offers a distinct advantage.

The evolution of any quantum system is described by a quantum operation, which may depend on one or more
parameters. Examples of parameter dependent evolution:

• optical phase shift in interferometry and

• depolarizing quantum channels.

Task: Knowing the type of evolution, estimate parameters as accurately as possible by

subjecting quantum systems to the evolution.

The probabilistic nature of outcomes of measurements on quantum systems and the effects of measurements
on quantum states imply that the quantum operation, Γ̂(λ), must be invoked repeatedly (N times).
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Parameter estimates fluctuate statistically between repeated runs, each with N quantum

operation invocations on the same input state. The statistics of the outcomes of

measurements on the quantum systems determine the probabilities of various estimates.

Cramér-Rao bound and Fisher Information

The accuracy of the measurement is quantified in terms of the mean square error,

m. s. e (λest) =
〈

(

λest − λ
)2
〉

.

For any unbiased estimator, the Cramér-Rao bound gives [1]:

MSE depends on
estimator choice.

m. s. e (λest) >
1

F (λ)
>

1

H(λ)
.

Classical Fisher information depends on
measurement choice but not estimator.

Quantum Fisher information
depends on initial state but
not measurement.

The quantum Fisher information is given by

H(λ) = Tr
(

ρ̂fL̂
2
)

with
∂ρ̂f
∂λ

=
1

2

(

ρ̂fL̂ + L̂ρ̂f

)

Optimal estimation: choose input state and additional parameter-independent unitaries

so as to maximize the quantum Fisher information.

Parameter Estimation for the Bit Flip Channel

A bit flip channel acts on a single qubit via

ρ̂i 7→ ρ̂f(λ) = λρ̂i + (1− λ)σ̂xρ̂iσ̂x.

The bit flip can be attained via unitary evolution with an
additional “coin toss” qubit. This is an example of a pro-

grammable channel [2].
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The “coin flip”unitary is
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√
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)

.

Task: Determine largest quantum Fisher informa-

tion, H(λ), with N uses of the bit flip channel.

For N independent uses of the channel, each with the

pure input state |ψi〉 =
1√
2
(|0〉 + i |1〉) ,

H(λ) =
N

λ(1− λ)
.

Multiple (N) uses of the bit-flip channel interspersed with arbitrary channel unitary operations ({T̂j}), each of
which is independent of λ.

N coin toss
qubits.

Channel and
ancillas. Ini-
tial state ρ̂i.
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Quantum Fisher infor-
mation for both chan-

nel and coin toss

qubits, Hextended(λ),
is independent of all ex-
cept the coin-toss uni-
taries and

Hextended(λ) =
N

λ(1− λ)
.

The channel quantum Fisher information, H(λ), for measurements restricted to just the channel qubits satisfies

H(λ) 6 Hextended(λ) =
N

λ(1− λ)
.

The optimal quantum Fisher information can be attained with pure chan-
nel input states with no entanglement between channel qubits.

Unitary Parameter Estimation

For any unitary transformation of the form Û = e−iĜλ/2, where Ĝ is an Hermitian
generator, the maximal quantum Fisher information using N unitary invocations is [3]:

Unentangled input states ⇒ H(λ) = N (gmax − gmin)
2

Entangled input states ⇒ H(λ) = N2 (gmax − gmin)
2

where gmax and gmin are extreme eigenvalues of Ĝ.

Entanglement offers an improvement, quadratic in N , in the
accuracy of unitary parameter estimation.

Parameter Estimation for Other Non-Unitary Channels

For programmable channels (e.g. bit-flip, phase-flip, and depolarizing channels) [2]:

• the optimal quantum Fisher information with N channel uses scales as O(N ), but

• for the depolarizing channel entanglement offers advantages [4, 5, 6].

Entanglement offers advantages for depolarizing channel pa-
rameter estimation but these do not scale beyond O(N).

Conclusions

The accuracy of channel parameter estimation can be assessed via the optimal quantum Fisher
information, H(λ). For N uses of:

• the bit-flip channel, H(λ) = N/λ(1− λ) and is attained with unentangled states.

• a unitary channel, H(λ) scales as O(N2) and is attained with entangled states.

• the depolarizing channel, H(λ) scales as O(N ) and entangled states offer advantages.
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