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Abstract
We consider protocols for estimating the parameter which characterizes a single qubit depolarizing channel, with the goal of attaining the

most accurate estimate per channel use. The accuracy of any quantum estimation protocol will be quantified via the quantum Fisher

information (QFI) since the Crámer-Rao bound implies that a larger QFI yields a smaller lower bound on the possible variance in any

estimate of the parameter. Within this framework, the choice of input state prior to channel invocation affects estimation accuracy. The

known optimal estimation scheme uses pairs of maximally entangled pure input states, giving a gain over any protocol using unentangled

input states. Entangling more than two qubits initially in a pure state provides no further gain in the QFI per channel use.

We ask if, when the available input states are not pure, these gains persist and if correlating more than two qubits is advantageous. We

present a protocol using input states correlated over any number of qubits and compare this to an independent channel use protocol

using uncorrelated mixed states. We show that the correlated state protocol yields gains in the QFI per channel use for certain physically

reasonable parameter ranges. We show that, unlike the pure state case, using more than two correlated qubits can be advantageous

and we show that, as the initial qubit states become highly mixed, adding additional correlated qubits can provide substantial gains in

estimation accuracy. We show that for two qubits, such gains are attained even when the state prior to channel invocation are separable.

The depolarizing channel maps a qubit as

ρ̂
Γ̂(λ)7→ 1− λ

2
Tr (ρ̂)Î + λρ̂

where the parameter 0 6 λ 6 1 describes the strength of the channel.

Task: Estimate parameter, λ, by subjecting quantum systems to channel.

Quantum Estimation and Fisher Information

ρ̂i

Γ̂(λ)

Γ̂(λ)
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Choose
n qubit input
state.

Post-evolution
final state.

Choose joint measurement
on all qubits. List outcomes.

❀ x1

❀ xm

❀ xn

Choose estimator function.
Gives estimate:

λest = λest(x1, . . . , xn)

Goal: Unbiased estimate;
smallest fluctuations.

Cost: number of channel invocations, m.

The accuracy of the measurement is quantified in terms of the mean square error,

m. s. e (λest) =
〈

(

λest − λ
)2
〉

.

For any unbiased estimator, the Cramér-Rao bound gives [1]:

MSE depends on
estimator choice.

m. s. e (λest) >
1

F (λ)
>

1

H(λ)
.

Classical Fisher information depends on
measurement choice but not estimator.

Quantum Fisher info. de-
pends on ρ̂f but not measure-
ment choice nor estimator.

The quantum Fisher information (QFI) is given by
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and computed [1] via diagonal decomposition, ρ̂f =
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Task: For fixed number of channel invocations, m, choose number of qubits,
n, and their input state, ρ̂i, to maximize QFI.

If the channel is invoked m times on identically prepared independent or uncorrelated quantum
systems, then H(λ) = mHs(λ) where Hs(λ) is the quantum Fisher information a single sys-
tem/invocation. However, using entangled or correlated input states can, with the same
number of channel invocations, yield a larger QFI for certain scenarios [2, 3, 4, 5].
For the depolarizing channel the optimal protocol, per channel invocation, uses a single channel
invocation on one of a pair maximally entangled pure input states [3]; this requires pure input
states and gives a slight advantage but entangling more than two pure state qubits does
not help.

Noisy depolarization channel parameter estimation: What if pure input states
are unavailable and input states must be constructed from mixed initial states?

Suppose that input states must be constructed from mixed initial states via unitary transfor-
mations only. Each qubit is in an initial state,

ρ̂0 =
1

2

(

Î + rσ̂n

)

where r is the polarization (purity) and σ̂n a Pauli operator. This is true for typical NMR
(r ≈ 10−5).

Independent Channel Use Protocol

Input state is generated using only single qubit unitary operations.

Assume that the input state is ρ̂i = ρ̂0⊗ ρ̂0⊗· · ·⊗ ρ̂0. Then for m independent channel uses,
the optimal QFI is

Hopt ind(λ) = m
r2

1− λ2r2
.

This is similar to the classical strategy of repetition and averaging. This does not give any gain in
estimation accuracy, per channel use.

Could correlated input states enhance estimation accuracy (per
channel use) when the qubits are initially in (noisy) mixed states?
Is correlation amongst more than two qubits advantageous?

Correlated State Protocol

Input state is generated by a correlating preparatory unitary.
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ρ̂0

ρ̂0

ρ̂0

Ûprep

ρ̂i

Γ̂(λ)

Γ̂(λ) ρ̂f(λ)

Same initial states as for independent chan-
nel use protocol. Same as scheme of [4, 5].

Ûprep ≡

b

σ̂z

b

σ̂z

b

σ̂z

Ĥ

Ĥ

Ĥ

Ĥ

Ĥ is a single qubit Hadamard gate.

With pure initial states this would produce GHZ-type input states for the estimation process. The
input state only has non-zero entries on the diagonal and counter-diagonal, facilitating diagonal
decomposition. Example (n = m = 2):

ρ̂i =
1

4









1 + r2 0 0 2ir
0 1− r2 0 0
0 0 1− r2 0

−2ir 0 0 1 + r2









⇒ ρ̂f(λ) =
1
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1 + λ2r2 0 0 2irλ2

0 1− λ2r2 0 0
0 0 1− λ2r2 0

−2irλ2 0 0 1 + λ2r2









QFI and Estimation Accuracy Gains

Compare the two protocols when using the same number of channel invocations and
the same polarizations.

Diagonal decomposition of ρ̂f allows for computation of QFI. The gain in QFI is

G(λ) :=
H(λ)

Hopt ind(λ)
.

QFI independent channel use protocol.

QFI correlated state protocol.

With channel acting on all qubits, (m = n)
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For r ≪ 1, these give

H(λ) = n3r2λ2n−2 +O(r3) and G = n2λ2n−2 + O(r2).

In general gain depends on number of channel invocations and polarization. For two qubits:

Single channel invocation
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Correlated state protocol always en-
hances accuracy.

Multiple channel invocation
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Correlated state protocol enhances
accuracy for certain parameters.

Entanglement
For two qubits the presence of entanglement can be assessed analytically. The state of the system
immediately prior to channel invocation is separable whenever r <

√
2− 1.

Gains in estimation accuracy cannot be attributed to entanglement.

Correlated states can enhance depolarizing channel pa-
rameter estimation accuracy:

•Enhancement depends on purity and parameter.

•Whether to use channel once or more depends on purity and parameter.

• For very small purity and weak depolarization more than two correlated
qubits can be advantageous (e.g. NMR), unlike pure input state case.
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