FRW Cosmology & Inflationary Theory

Prof. Chad A. Middleton Colorado Mesa University Physics Seminar Feb. 15, 2018

Cosmology

• is the scientific study of the large scale properties of the Universe as a whole.

- addresses questions like:
 - Is the Universe (in)finite in spatial extent?
 - Is the Universe (in)finite in temporal extent?
 - What are the possible geometries of the Universe?
 - What is the fate of the Universe?

Conclusion

Theory & observational evidence imply that:

- the Universe is *flat & infinite* in spatial extent
- the Universe began w/ a "Big Bang" 13.8 billion years ago
- a hypothesized early-time inflationary expansion explains most of the puzzles of FRW cosmology
- the Universe is currently undergoing accelerated expansion & is predicted to continue to do so *indefinitely!*

In 1915, Einstein publishes his General Theory of Relativity

$$G_{\mu\nu} = \frac{8\pi G}{c^2} T_{\mu\nu}$$

• $G_{\mu\nu}$ describes the curvature of spacetime

• $T_{\mu\nu}$ describes the matter & energy in spacetime

• https://www.aip.org/sites/default/files/styles/einstein_full/public/einstein_slideshow/einstein-calendar-cover2015.jpg?itok=5q5C8sNe

When forced to summarize the general theory of relativity in one sentence; *time* and *space* and *gravity* have no separate existence from *matter*.

- Albert Einstein

Matter tells space how to curve, Space tells matter how to move

Sean M. Carrol, *Spacetime and Geometry: An Introduction to Einstein's General Relativity* (Addison Wesley, 2004)

Friedmann-Robertson-Walker (FRW) cosmology...

Cosmological Principle

On sufficiently large distance scales, the Universe is

- 1. spatially isotropic
- 2. spatially homogeneous

⇒ Maximally symmetric space

For a *Homogeneous* & *Isotropic* Universe... 3 possible geometries

Recent data indicates that the Universe is *flat*

$$\rho = 3\frac{\dot{a}^2}{a^2} + 3\frac{\kappa}{a^2}$$

$$p = -\left(2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right) - \frac{\kappa}{a^2}$$

$$0 = \dot{\rho} + 3(\rho + p)\frac{\dot{a}}{a}$$

- The density (ρ) , pressure (p), and curvature (κ) of the Universe determine the *time evolution* of the scale factor (a).
- The matter & energy content consists of
 - radiation, pressureless matter & vacuum energy.

Choose an equation of state for each fluid component...

$$p = w\rho$$

- For radiation: w = 1/3
- For pressureless matter: w = 0
- For vacuum energy: w = -1

Using our equation of state, the Conservation of Energy equation can be solved...

$$ho(a) = rac{
ho_0}{a^{3(1+w)}}$$
 • For radiation: $w=1$, For pressureless matter: $w=0$

- For radiation: w = 1/3
- For vacuum energy: w = -1

The total density as a function of the scale factor is...

$$\left(
ho(a) =
ho_{
m crit} \left(\Omega_v + rac{\Omega_m}{a^3} + rac{\Omega_r}{a^4}
ight) \right)$$
 where $\Omega_i = rac{
ho_i}{
ho_{
m crit}}$

Using our equation of state, the FRW eqns can be solved for 1 fluid...

$$a(t) = a_0 t^{2/3(1+w)}$$

$$= e^{H(t-t_0)}$$

for
$$w \neq -1$$

for
$$w = -1$$

- For radiation dominated: $a(t) \sim t^{1/2}$ For matter dominated: $a(t) \sim t^{2/3}$ Early-time, decelerated expansion As $t \to 0$, $a(t) \to 0$: Big Bang!
- For vacuum energy dominated: $a(t) \sim e^{Ht}$

Late-time, accelerated expansion

NOTICE:

The *constant* a_0 can be chosen so that...

$$a(t) = \left(\frac{t}{t_0}\right)^{2/3(1+w)}$$

so that $a(t_0) = 1$ where t_0 is the present time. The total density, at the present time, becomes...

$$\rho(a) = \rho_{\text{crit}} \left(\Omega_{v,0} + \Omega_{m,0} + \Omega_{r,0} \right)$$
 where

$$ho(a) =
ho_{\rm crit} \left(\Omega_{v,0} + \Omega_{m,0} + \Omega_{r,0}\right)$$
 where $\Omega_{r,0} \sim 10^{-4}$ $\Omega_{m,0} = 0.309$ $\Omega_{v,0} = 0.691$

The Hubble Parameter...

Observational evidence implies...

$$H_0 = 72 \pm 7 \text{ (km/s)/Mpc}$$

= $2.3 \times 10^{-18} \text{ s}^{-1}$

The *Hubble parameter* can be calculated *theoretically*...

$$H_0 = \frac{\dot{a}(t_0)}{a(t_0)} = \frac{2}{3(1+w)} \frac{1}{t_0} \equiv \frac{1}{t_H}$$
using $a(t) = a_0 t^{2/3(1+w)}$

Reindl et al., ApJ 624, 532 (2005)

 $14 \times 10^9 \text{ years}$

The Critical Density of the Universe...

For a *flat* Universe evaluated *now*, the 1st FRW equation yields the *critical density*...

http://wmap.gsfc.nasa.gov/media/990006/990006 2048.jpg

Puzzle 1: The Cosmological Constant Problem?

From the zero-point energies of vacuum fluctuations...

$$\rho_v^{th} \sim 2 \times 10^{109} \text{ J/m}^3$$

Cosmological observations imply...

$$\rho_v^{obs} \sim 2 \times 10^{-11} \text{ J/m}^3$$

The ratio yields...

$$\rho_v^{th}/\rho_v^{obs} \sim 10^{120}$$

http://www.upscale.utoronto.ca/GeneralInterest/Harri son/BlackHoleThermo/VirtualPair.gif

Puzzle 2: Flatness Puzzle

Why is the Universe so *flat*?

The 1st FRW equation can be written as

$$\Omega(t) - 1 = \frac{\kappa}{\dot{a}^2}$$

where the density parameter $\Omega(t)$...

$$\Omega(t) \equiv \frac{\rho(t)}{\rho_{\rm crit}}$$
 where $\rho_{\rm crit} \equiv 3\frac{\dot{a}^2}{a^2}$

Puzzle 2: Flatness Puzzle

Why is the Universe so *flat*?

The 1st FRW equation can be written as

$$\Omega(t) - 1 = \frac{\kappa}{\dot{a}^2} \qquad \therefore \qquad \Omega(t) - 1 \propto \kappa a(t)^{1+3w}$$
 using $a(t) = a_0 t^{2/3(1+w)}$

where the density parameter $\Omega(t)$...

$$\Omega(t) \equiv \frac{\rho(t)}{\rho_{\text{crit}}} \text{ where } \rho_{\text{crit}} \equiv 3\frac{\dot{a}^2}{a^2}$$

Puzzle 2: Flatness Puzzle

For a matter or radiation dominated Universe...

$$|\Omega(t) - 1|_m \propto \kappa a \propto \kappa t^{2/3}$$
 LHS must diverge w/ time, $|\Omega(t) - 1|_r \propto \kappa a^2 \propto \kappa t$ $\Omega = 1$ is an unstable fixed

 $\Omega = 1$ is an unstable fixed point!

From observation:

$$|\Omega_0 - 1| \le 0.2$$
 \rightarrow Now

1 part in 30 trillion! $|\Omega_{\rm BBN} - 1| \le 3 \times 10^{-14}$ Big Bang Nucleosynthesis

Puzzle 3: Cosmic Coincidence Problem?

Why is the vacuum energy density the *same* order of magnitude as the matter density?

Mathematically:

Why is
$$\Omega_{v,0}/\Omega_{m,0} \sim 1$$
?

In general:

$$\left(\frac{\Omega_v}{\Omega_m} \propto a^3(t)\right)$$

Puzzle 4: Horizon Problem?

Why is the CMB uniform on large scales?

2 antipodal CMB photons are causally disconnected yet have *same temperature to 1 part in 10⁵! Why?

Puzzle 5: Initial Jump Start?

The 2nd FRW equation can be written

$$\boxed{\frac{\ddot{a}}{a} = -\frac{1}{6}(1+3w)\rho}$$

For a radiation dominated Universe: w = 1/3

• So what got FRW cosmology going in the 1st place?

Puzzle 6: Structure of the Universe?

Where did the regions of slightly enhanced density in the early Universe originate from?

The Inflationary Solution

In 1981, Alan Guth realizes that *most* of these *cosmological* puzzles could be solved by considering *particle* physics.

Grand Unified Theory (GUT) = unification of 3 of 4 fundamental forces

In early Universe, strong force "freezes" out releasing enormous amounts of energy

The Inflationary Solution

Supplement to Big Bang Cosmology

Most Big Bang puzzles are solved by this one beautifully simple idea.

Early universe is hypothesized to expand by a factor of ~10⁴³ in about 10⁻³⁴ s!

For the Robertson-Walker metric and a homogeneous scalar field... The scale factor, a(t), & the scalar field, $\phi(t)$, are determined by

$$V(\phi) = 3\frac{\dot{a}^2}{a^2} - \frac{1}{2}\dot{\phi}^2$$
$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} = -\frac{dV}{d\phi}$$

For the Robertson-Walker metric and a homogeneous scalar field... The scale factor, a(t), & the scalar field, $\phi(t)$, are determined by

Notice:

• Mimics Newton's 2nd Law for a particle being accelerated by a force, $-\frac{dV}{d\phi}$ but impeded by a velocity-dependent retarding force!

The scalar field reaches "terminal velocity" when...

$$3\frac{\dot{a}}{a}\dot{\phi} = -\frac{dV}{d\phi}$$

For "Slow roll" inflation...

$$V(\phi) \simeq \text{const}$$
 : $\frac{dV}{d\phi}, \dot{\phi}$

are small

https://www.hindawi.com/journals/aa/2010/565248/fig1/

During inflation...

the scale factor is given by...

$$\left[a(t) \propto e^{H_i t} \right]$$
 where $t_i < t < t_f$

During inflation...

the scale factor is given by...

$$a(t) \propto e^{H_i t}$$

etor is given by... assume
$$t_i = t_{GUT} \simeq 10^{-36} \text{ s}$$
 $at t_i < t < t_f$

During inflation...

• the scale factor is given by...

etor is given by... assume
$$t_i = t_{GUT} \simeq 10^{-36} \; \mathrm{s}$$

$$assume \ t_i = t_{GUT} \simeq 10^{-36} \; \mathrm{s}$$

$$assume \ t_i < t < t_f$$

the scale factor inflates rapidly...

$$\frac{a(t_f)}{a(t_i)} = e^{H_i(t_f - t_i)}$$
 where $H_i \simeq \frac{1}{t_{GUT}} \simeq 10^{36} \text{ s}^{-1}$

During inflation...

• the scale factor is given by... assume $t_i = t_{GUT} \simeq 10^{-36} \text{ s}$

$$\boxed{a(t) \propto e^{H_i t}} \quad \text{where} \quad t_i < t < t_f$$

the scale factor inflates rapidly...

$$\frac{a(t_f)}{a(t_i)} = e^{H_i(t_f - t_i)}$$
 where $H_i \simeq \frac{1}{t_{GUT}} \simeq 10^{36} \text{ s}^{-1}$

• Now, if $t_f \simeq 10^{-34} \text{ s}$ then $\frac{a(t_f)}{a(t_i)} = e^{100} \sim 10^{43} \text{ !}$

Puzzle 2: Flatness Puzzle, revisited...

Inflation drives the Universe towards *flatness*

$$\Omega(t) - 1 = \frac{\kappa}{\dot{a}^2} \qquad \therefore \qquad \left[|\Omega(t_f) - 1|_i \propto \kappa e^{-2H_i t_f} \right] \sim \kappa e^{-200}$$
using $a(t) \propto e^{H_i t}$

Notice:

 $\Omega = 1$ is an attractor for large t!

Puzzle 4: Horizon Problem, revisited...

During Inflation, the Universe undergoes superluminal expansion to acausal distances

The Universe is *smooth* on large scales because it was close together & in a state of *thermal equilibrium* prior to inflation

Puzzle 5: Initial Jump Start, revisited...

The scale factor during Early-time Inflation takes the form...

$$a(t) \propto e^{H_i t}$$

$$\ddot{a}(t) > 0$$

Inflation got FRW cosmology going in the 1st place!

Puzzle 6: Structure of the Universe, revisited...

Scalar field Inflationary theory predicts...

• regions of slightly enhanced density are due to quantum fluctuations

$$\phi(t) \to \phi(t) + \delta\phi(\mathbf{x}, t)$$

• Inflationary theory predicts that these *quantum fluctuations* inflate to yield *gravitational instabilities*!

Conclusion

Theory & observational evidence imply that:

- the Universe is *flat & infinite* in spatial extent
- the Universe began w/ a "Big Bang" 13.8 billion years ago
- a hypothesized early-time inflationary expansion explains most of the puzzles of FRW cosmology
- the Universe is currently undergoing *accelerated expansion* & is predicted to continue to do so *indefinitely!*

FRW cosmology

Assumption 1:

Choose the Robertson-Walker metric*...

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

Assumption 2:

3 non-interacting, perfect fluid components:

- radiation
- pressureless matter
- constant vacuum energy (a.k.a. cosmological constant)
 - * the Robertson-Walker metric describes a spatially homogeneous, isotropic Universe evolving in time

In 1965, observational evidence for the Big Bang!

Arno Penzias & Robert Wilson

- Bell Lab Physicists calibrating the Bell Labs microwave antenna designed for satellite communications
 - Awarded the 1978 Nobel Prize in physics for their discovery of the cosmic microwave background radiation.

Does this background radiation have a Blackbody Spectrum?

In Nov`89, NASA launches the *Cosmic Background Explorer* (COBE) to measure...

- the spectrum
- the anisotropies

http://cosmos.lbl.gov/Images/cobe_universe.jpg

of the cosmic background radiation.

Spectrum of the Cosmic Microwave Background Radiation

John Mather & George Smoot

Awarded the 2006 Nobel Prize in physics for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation measured by COBE.

http://www.faculty.umb.edu/gary_zabel/Courses/Parallel%20Universes/Texts/Remote%20Sensing%20Tutorial%20Page%20A-9.htm

The excellent agreement with Planck's law is *the* best fit ever measured!

COBE image of the

Cosmic Microwave Background Radiation

Light from when the Universe was 380,000 years old.

 Map of μK anisotropies

http://www.nasa.gov/images/content/403322main_COBEallsky_full.jpg

$$T_B = 2.725 \text{K} \pm 18 \mu \text{K}$$

WMAP image of the

Cosmic Microwave Background Radiation

http://www.nasa.gov/centers/goddard/images/content/96115main_Full_m.jpg

- WMAP satellite launched 06/01, ended 10/10
- WMAP image from 7 years of data!
- Data implies that universe is *flat*.

Planck image of the

Cosmic Microwave Background Radiation

https://www.nasa.gov/mission_pages/planck/#.Vvs8mnDgI2s

- Planck satellite launched 05/09, ended 10/13
- 2.5 x greaterresolution thanWMAP (1/12°)
- Measured
 polarization of light
 from early universe
- Found strong evidence for *inflation*.

Detailed analysis of *temperature variations* from Planck & WMAP data

Green curve is line of best fit.

$$\Omega_{r,0} \sim 10^{-4}$$
 $\Omega_{m,0} = 0.309$
 $\Omega_{v,0} = 0.691$

All ordinary matter (stars, galaxies, etc..) comprises only

4.9% of the total matter/energy of the Universe!

Inflationary Theory

Consider a scalar-field coupled to gravity

$$G_{\mu\nu} = \frac{8\pi G}{c^2} T_{\mu\nu}$$

where

$$T_{\mu\nu} = \nabla_{\mu}\phi\nabla_{\nu}\phi + \left[\frac{1}{2}g^{\alpha\beta}\nabla_{\alpha}\phi\nabla_{\beta}\phi - V(\phi)\right]g_{\mu\nu}$$

and where $V(\phi)$ describes the *self-interaction* of the scalar field

Georges Lemaître suggests the Universe had a beginning..

- Belgian Astrophysicist/Catholic Priest
- 1927 paper in Annals of the Brussels Scientific Society*
- showed that the universe had to be either contracting or expanding.
- suggested that the Universe had a definite beginning in which all its matter & energy were concentrated @ one point.

http://www.aquinasandmore.com/resources/georges-lemaitres.jpg

Did the Universe begin with a "Big Bang"?

 $https://svs.gsfc.nasa.gov/vis/a010000/a010100/a010128/Arrow_JPG.jpg$

The Big Bang...

- is **not** an explosion that happened @ **one** pt in space
- occurred at *all* pts in *space*
- @ one moment in time

Big Bang - a **time** of *infinite* density, *infinite* temperature, and *infinite* spacetime curvature

In the early 1960s, the Princeton group in gravitational physics...

 finds that the Universe should be uniformly bathed in a background microwave radiation

predicts a blackbody
 spectrum of the
 background radiation
 with T ~ 10K

Data from Type Ia Supernovae, WMAP and SDSS implies...

- The expansion of the Universe is *ACCELERATING!*
- seems to indicate a vacuum energy

Saul Perlmutter, Brian Schmidt, & Adam Riess

Awarded the 2011 Nobel Prize in physics for the discovery of the accelerating expansion of the Universe through

observations of distant supernovae.

http://nedwww.ipac.caltech.edu/level5/Carroll2/Figures/figure3.jpeg High-z Supernova Search Team: Riess et al., 1998